Supporting Information

NH$_3$-assisted synthesis of microporous silicon oxycarbonitride ceramics from preceramic polymers: a combined N$_2$ and CO$_2$ adsorption and small angle X-ray scattering study

Cristina Schitco, a * Mahdi Seifollahi Bazarjani, a, b Ralf Riedel a and Aleksander Gurlo a, b

a Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Jovanka-Bontschits Strasse 2, D-64287 Darmstadt, Germany, E-mail: *schitco@materials.tu-darmstadt.de

b current address: Technische Universität Berlin, Fakultät III Prozesswissenschaften, Institut für Werkstoffwissenschaften und -technologien, Fachgebiet Keramische Werkstoffe, Hardenbergstraße 40, 10623 Berlin, Germany
Figure S1. The tangent method illustrated for HTT600NHAr.
Figure S2. \(\text{N}_2 \) adsorption isotherms for SMP600NH, SMP600NHAr, and SMPAr (a) and \(\text{CO}_2 \) adsorption isotherm for SMP600NHAr (b).

Figure S3. FTIR spectra of HTT600NH and SPR600NH samples. For HTT600NH sample, bands located at 3387 cm\(^{-1}\) and 1185 cm\(^{-1}\), correspond to \(\nu(\text{N-H}) \) vibrations and \(\gamma(\text{N-H}) \) deformation bands of Si-NH-Si, respectively. The dominant bands around 900-1000 cm\(^{-1}\) are attributed to Si\(_2\)N vibrations. For SPR600NH sample, weak bands at 3450 cm\(^{-1}\) and 960 cm\(^{-1}\) correspond to Si-OH bonds.
Figure S4. SAXS curves of specimens derived from polycarbosilane, polysiloxane, and polysilazane precursors. For the sample notation, see Figure 1 b in the main manuscript.
Figure S5. Different SAXS profiles: a) Type 1, b) Type 2, and c) Type 3. For details see section 3.5 in the main manuscript.