Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities

Zheng-Long XU, Biao ZHANG, Sara ABOUALI, Mohammad AKBARI GARAKANI, Jiaqiang HUANG, Jian-Qiu HUANG and Jang-Kyo KIM*

Department of Mechanical Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Fig. S1 SEM images of (a) Si/Fe/CNF and (b) C-Si/F-CNF.

Fig. S2 HRTEM images of Si/Fe/CNF: white arrows in (b) present mesopores formed around Fe₃C particles and the inset SAED image corresponds to Fe₃C.
Fig. S3 TEM images of C-Si/F-CNF after etching different durations of (a) 15; (b) 30; (c) 45; and (d) 60 min.

Fig. S4 BJH pore size distributions ranging from 10 to 60 nm of Si/Fe/CNF and C-Si/F-CNF.
Fig. S5 Differential thermal analysis (DTA) curve of Si/Fe/CNF.

Fig. S6 Initial charge/discharge profiles of CNF, Fe/CNF and F-CNF at 0.5 A g$^{-1}$. The electrochemically inert Fe$_3$C in Fe/CNF significantly decreased the capacity of CNF, while the functionalized CNF (F-CNF) delivered a much higher original capacity than that of CNF due to the additional Li ion sites.25
Fig. S7 High rate capacities of C-Si/F-CNF electrode measured at 5.0 A g$^{-1}$ for 70 cycles.