Electronic Supplementary Information (ESI) for

Solvothermal synthesis of MIL-53(Fe) hybrid magnetic composite for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light

Caihong Zhang, Lunhong Ai*, and Jing Jiang*

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1, Nanchong 637002, P.R. China. E-mail: ah_aihong@163.com (L. Ai); 0826zjjh@163.com (J. Jiang); Tel/Fax: +86-817-2568081

Fig. S1 TEM (a) and HRTEM (b) of the MHMCs
Fig. S2 Linear-sweep voltammagrams of the Fe$_2$O$_3$ film electrode collected with a scan rate of 10 mV·s$^{-1}$ in dark and under visible light illumination in 0.5 M Na$_2$SO$_4$ aqueous solutions.

Fig. S3 Time profiles of adsorption of RhB over the MHMCs and MIL-53(Fe) in the dark.
Fig. S4 Degradation of PNP in different photocatalytic systems under visible light irradiation

(experimental conditions: PNP, 10 mg·L⁻¹; catalyst dosage, 0.4 g·L⁻¹; H₂O₂, 20 mM).

Fig. S5 (a) Effect of initial pH on the degradation of RhB in MHMCs/H₂O₂ system under visible light irradiation. (b) The corresponding apparent reaction rate constants of the photodegradation of RhB at different initial pH.
Fig. S6 Effect of catalyst dosage on the degradation of RhB in MHMCs/H$_2$O$_2$ system under visible light irradiation.

Fig. S7 (a) Effect of H$_2$O$_2$ concentration on the degradation of RhB in MHMCs/H$_2$O$_2$ system under visible light irradiation. (b) The corresponding apparent reaction rate constants of the photodegradation of RhB at different H$_2$O$_2$ concentration.
Fig. S8 (a) Photodegradation of RhB over MHMCs-H$_2$O$_2$ system under visible light irradiation in the presence of trapping systems (scavenger amount: 12 mM). (b) Comparison of the depression efficiency of MHMCs-H$_2$O$_2$ system for the photodegradation of RhB.

Fig. S9 FTIR spectra of the MHMCs before (a) and after (b) photocatalytic reaction.
Fig. S10 Magnetic response of the MHMCs before (a) and after (b) photocatalytic reaction to an external magnetic field.