Supporting information

Improvement of Photovoltaic Performance of DSSCs by Modifying Panchromatic Zinc Porphyrin Dyes with Heterocyclic Units

Hai-Lang Jia,^a Ze-Min Ju,^a Hong-Xia Sun,^b Xue-Hai Ju,^c Ming-Dao Zhang,^d Xing-Fu Zhou^b and He-Gen Zheng^{*a}

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China, E-mail: zhenghg@nju.edu.cn. Fax : 86-25-83314502. ^bState Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China, E-mail: zhouxf@njut.edu.cn ^cSchool of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China, E-mail:xhju@mail.njust.edu.cn ^dJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, P.R. China. E-mail: matchlessjimmy@163.com.

General information

All solvents were treated by standard methods before use and all chemicals were purchased from commercial suppliers and used without further purification unless indicated otherwise. *N*, *N*-Dimethylformamide, toluene and tetrahydrofuran were dried and distilled from CaH₂.

The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DRX (500 MHz) NMR spectrometer with tetramethylsilane (TMS) as the internal standard. The mass spectra were measured in ESI Mass Spectrometer (LCQ Fleet).

Experimental Details:

Synthesis of compound 2

Under an nitrogen, compound **1** (5.4 g, 18.4 mmol), bis(4-bromophenyl)amine (2 g, 6.1 mmol), K₂CO₃ (2.5 g, 18.4 mmol) and Pd(PPh₃)₄ (353 mg, 0.306 mmol) were dissolved in 1, 4-dioxane (60 mL) and H₂O (20 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 10/1) to give the compound **2** as a white solid (2.9 g, 94%).¹HNMR (DMSO-*d*₆, 500Hz) $\delta_{\rm H}$ 8.46 (s, 1H), 7.47-7.48 (m, 4H), 7.10-7.15 (m, 6H), 6.79 (s, 2H), 2.78 (t, *J* = 7.5Hz, 4H), 1.64 (m, 4H), 1.30-1.37 (m, 12H), 0.88 (t, *J* = 6Hz, 6H). MS (EI): Calcd for C₃₂H₃₉NS₂, 501.79; found, 501.4.

Synthesis of compound 3

Under an nitrogen, compound **1** (6.1 g, 20.8 mmol), tris(4-bromophenyl)amine (5 g, 10.4 mmol), K_2CO_3 (4.3 g, 31.1 mmol) and $Pd(PPh_3)_4$ (600 mg, 0.519 mmol) were dissolved in 1, 4-dioxane (100 mL) and H_2O (30 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc (3×50 mL). The

combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE) to give the compound **3** as a white solid (2.1 g, 31%).¹HNMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 7.48 (d, J =8Hz, 4H), 7.38 (d, J = 8Hz, 2H), 7.08-7.09 (m, 6H), 7.02 (d, J = 8Hz, 2H), 6.76 (s, 2H), 2.84 (t, J = 7.5Hz, 4H), 1.68 (m, 4H), 1.34-1.45 (m, 12H), 0.89 (t, J = 6Hz, 6H). MS (EI): Calcd for C₃₈H₄₂BrNS₂, 656.78; found, 657.4.

Synthesis of compound 4

A mixture of compound 3 (1 g, 1.52 mmol), trimethylsilylacetylene (0.3 g, 3.05 mmol) and CuI (0.104 g, 0.548 mmol) in TEA (30 mL) was added Pd(PPh₃)₂Cl₂ (0.427 g, 0.609 mmol) under dinitrogen. The mixture was heated under 80°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the mixture was extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was dissolved in anhydrous THF (20 mL) without further purification and TBAF (0.4 mL, 1 M THF) was added. The reaction mixture was stirred at room temperature for 30 min under dinitrogen. The mixture was quenched with H₂O and then extracted with CH₂Cl₂. The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (PE) to give the compound 4 as a yellow solid (0.8 g, 87%).¹HNMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 7.52 (d, J = 8.5Hz, 4H), 7.41 (d, J = 8.5Hz, 2H), 7.07-7.14 (m, 8H), 6.77 (s, 2H), 3.09 (s, 1H), 2.87 (t, J = 7.0Hz, 4H), 1.74-1.77 (m, 4H), 1.38-1.45 (m, 12H), 0.97 (t, J = 6Hz, 6H). MS (EI): Calcd for C₄₀H₄₃NS₂, 601.91; found, 601.4.

Synthesis of compound 5

A mixture of compound **3** (1 g, 1.52 mmol), bis(pinacolato)diboron (0.773 g, 3.05 mmol) and KOAc (0.448 g, 4.57 mmol) in DMF (30 mL) was added Pd(dppf)Cl₂ (0.111 g, 0.152 mmol) under dinitrogen. The mixture was heated under 80°C for

overnight. The reaction mixture was cooled to room temperature and H₂O (100 mL) was added, the mixture was extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA=10/1) to give the compound **5** as a yellow solid (0.82 g, 77%).¹HNMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 7.73-7.76 (m, 2H), 7.47-7.51 (m, 4H), 7.10-7.15 (m, 8H), 6.77 (s, 2H), 2.88 (t, *J* = 7.5Hz, 4H), 1.70 (m, 4H), 1.38-1.44 (m, 24H), 0.95 (t, *J* = 6Hz, 6H). MS (EI): Calcd for C₄₄H₅₄NO₂S₂, 703.85; found, 703.4.

Synthesis of compound 7

A mixture of compound **2** (773 mg, 1.54 mmol), compound **6** (500 mg, 0.385 mmol) ^[1] and 60 % NaH (62 mg, 1.54 mmol), DPEphos (75 mg, 0.138 mmol) and Pd(OAc)₂ (21 mg, 0.092 mmol) in dry toluene (30 mL) was refluxed for overnight under dinitrogen. The solvent was removed under vacuum. The residue was purified by column chromatography (silica gel) using DCM/hexanes = 1/4 as eluent to give the product as a green solid (350 mg, 53%).¹HNMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 9.71 (d, *J* = 4.5Hz, 2H), 9.22 (d, *J* = 4.5Hz, 2H), 8.91 (d, *J* = 4.5Hz, 2H), 8.78 (d, *J* = 4.5Hz, 2H), 7.64 (t, *J* = 8.5Hz, 2H), 7.33-7.39 (m, 7H), 6.95-6.99 (m, 7H), 6.67 (s, 2H), 3.86 (t, *J* = 6.5Hz, 8H), 2.77 (t, *J* = 7.5Hz, 4H), 1.63-1.69 (m, 4H), 1.41-1.51 (m, 21H), 1.36-1.38 (m, 4H), 1.31 (t, 12H), 1.00-1.03 (m, 8H), 0.80-0.89 (m, 22H), 0.51-0.65 (m, 44H). ¹³CNMR (CDCl₃, 500Hz) $\delta_{\rm C}$ 159.8, 152.5, 151.3, 151.2, 150.7, 150.3, 144.5, 141.7, 132.3, 132.1, 130.7, 130.0, 129.8, 127.3, 126.1, 124.7, 122.9, 121.7, 121.4, 120.6, 114.5, 109.9, 105.1, 99.6, 96.6, 68.5, 31.5, 30.2, 28.7, 28.5, 28.4, 25.1, 22.5, 22.2, 19.1, 14.1, 13.7, 11.9. MS (ESI): Calcd for C₁₀₇H₁₄₁N₅O₄S₂SiZn, 1718.89; found, 1718.00.

Synthesis of compound 8

Under an nitrogen, compound **5** (406 mg, 0.577 mmol), compound **6** (500 mg, 0.385 mmol), K_2CO_3 (106 mg, 0.770 mmol) and $Pd(PPh_3)_4$ (22 mg, 0.019 mmol) were dissolved in 1, 4-dioxane (20 mL) and H_2O (10 mL). The mixture was heated

under 90°C for overnight. The reaction mixture was cooled to room temperature and extracted by CH₂Cl₂ (3×20 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/CH₂Cl₂ = 4/1) to give the compound **8** as a green solid (520 mg, 75%).¹HNMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 9.83 (d, *J* = 4.5Hz, 2H), 9.03-9.04 (m, 4H), 8.96 (d, *J* = 4.5Hz, 2H), 7.77 (t, *J* = 8.0Hz, 2H), 7.66 (d, *J* = 9Hz, 4H), 7.56 (d, *J* = 8.0Hz, 2H), 7.48 (d, *J* = 8.5Hz, 4H), 7.16 (d, *J* = 3.5Hz, 2H), 7.09 (d, *J* = 9Hz, 4H), 6.79 (d, *J* = 3.5Hz, 2H), 3.88 (t, *J* = 6.0Hz, 8H), 2.88 (t, *J* = 8.0Hz, 4H), 1.76-1.80 (m, 4H), 1.53-1.56 (m, 21H), 1.47-1.50 (m, 4H), 1.39-1.42 (m, 12H), 1.02-1.06 (m, 8H), 0.80-0.99 (m, 22H), 0.48-0.65 (m, 44H). ¹³CNMR (CDCl₃, 500Hz) $\delta_{\rm C}$ 160.1, 152.6, 151.1, 150.4, 149.6, 146.6, 145.1, 141.4, 137.7, 135.4, 132.1, 131.7, 131.0, 130.7, 129.8, 126.5, 125.1, 124.7, 122.1, 121.7, 121.4, 121.1, 114.5, 110.2, 105.4, 98.8, 96.1, 68.7, 31.7, 31.3, 30.3, 28.8, 28.6, 25.2, 22.6, 22.2, 19.2, 14.1, 13.8, 12.1. MS (ESI): Calcd for C₁₁₃H₁₄₅N₅O₄S₂SiZn, 1794.99; found, 1794.00.

Synthesis of compound 9

A mixture of compound **4** (347 mg, 0.577 mmol), compound **6** (500 mg, 0.385 mmol) and AsPh₃ (236 mg, 0.770 mmol) in THF (50 mL) and TEA (10 mL) was added Pd₂(dba)₃ (105 mg, 0.115 mmol) under dinitrogen. The mixture was heated under 80 °C for 5 h. The reaction mixture was cooled to room temperature and the solvent was evaporated, The residue was purified by silica gel column chromatography (PE/CH₂Cl₂ = 4/1) to give the compound **9** as a green solid (0.38 g, 55%).¹HNMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 9.70 (d, *J* = 4.5Hz, 2H), 9.67 (d, *J* = 4.5Hz, 2H), 8.88-8.89 (m, 4H), 7.89 (d, *J* = 8.5Hz, 2H), 7.70 (t, *J* = 8.5Hz, 2H), 7.56 (d, *J* = 8.5Hz, 4H), 7.24 (d, *J* = 8.5Hz, 4H), 7.12 (d, *J* = 3.5Hz, 2H), 7.02 (d, *J* = 8.5Hz, 6H), 6.77 (d, *J* = 3.5Hz, 2H), 3.86 (t, *J* = 6.0Hz, 8H), 2.83 (t, *J* = 7.0Hz, 4H), 1.70-1.75 (m, 4H), 1.43-1.45 (m, 21H), 1.28-1.36 (m, 16H), 0.97-1.01 (m, 8H), 0.77-0.93 (m, 22H), 0.47-0.60 (m, 44H). ¹³CNMR (CDCl₃, 500Hz) $\delta_{\rm C}$ 159.9, 152.2, 151.4, 150.6, 147.2, 145.9, 145.3, 141.2, 132.6, 131.9, 131.7, 130.7, 130.5, 130.1, 129.7, 126.4, 125.0, 124.9,

123.2, 122.1, 120.9, 115.6, 110.0, 105.3, 101.0, 100.1, 95.9, 95.4, 68.7, 53.4, 31.6, 31.2, 30.9, 30.2, 28.7, 28.5, 25.2, 22.5, 22.1, 19.1, 14.1, 13.7, 11.9. MS (ESI): Calcd for C₁₁₅H₁₄₅N₅O₄S₂SiZn, 1819.01; found, 1820.08.

Synthesis of dye JP1

To a solution of compound 8 (300 mg, 0.167 mmol) in anhydrous THF (20 mL) was added TBAF (0.6 mL, 1 M in THF). The solution was stirred at room temperature for 30 min under dinitrogen. The mixture was quenched with H₂O and then extracted with CH₂Cl₂. The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The residue and 5-bromo-2-thiophenecarboxylic acid (138 mg, 0.668 mmol) were dissolved in a mixture of anhydrous THF (40 mL) and TEA (10 mL) underdinitrogen, then Pd₂(dba)₃ (46 mg, 0.050 mmol) and AsPh₃ (102 mg, 0.334 mmol) were added to the mixture. The solution was refluxed for 6 h. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography ($CH_2Cl_2/MeOH = 20/1$), recrystallization from MeOH/Ether to give dye **JP1** (180 mg, 61%) as a green solid.¹HNMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 9.62 (d, J = 4.5Hz, 2H), 8.96 (d, J = 4.5Hz, 2H), 8.93 (d, J = 4.5Hz, 2H), 8.85 (d, J= 4.5Hz, 2H), 8.06 (t, J = 8.0Hz, 2H), 7.73 (d, J = 8.5Hz, 2H), 7.61 (d, J = 8.0Hz, 4H), 7.48 (d, J = 8.0Hz, 2H), 7.39 (d, J = 8.0Hz, 4H), 7.13 (d, J = 3.0Hz, 2H), 7.04 (d, J = 3.0Hz, 7.04 (d, J =8.5Hz, 6H), 6.77 (d, J = 3.0Hz, 2H), 3.88 (t, J = 6.5Hz, 8H), 2.85 (t, J = 7.5Hz, 4H), 1.70-1.77 (m, 4H), 1.28 (s, 12H), 0.89-1.01 (m, 18H), 0.79-0.85 (m, 12H), 0.42-0.64 (m, 36H). ¹³CNMR (CDCl₃, 500Hz) δ_C 159.9, 151.8, 151.2, 150.2, 149.5, 146.6, 145.1, 141.4, 135.6, 134.9, 132.4, 131.9, 131.3, 130.9, 129.9, 129.7, 126.5, 125.0, 124.7, 122.0, 121.6, 121.2, 114.8, 105.2, 68.6, 31.7, 31.6, 31.3, 30.3, 29.7, 29.5, 29.3, 28.8, 28.7, 28.6, 28.5, 25.2, 22.6, 22.2, 14.1, 13.8. MS (ESI): Calcd for C₁₀₉H₁₂₇N₅O₆S₃Zn, 1764.78; found, 1762.42.

Synthesis of dye JP2

The preparation method was the same as that of dye **JP1**. ¹HNMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 9.61 (d, *J* = 4.5Hz, 2H), 9.15 (d, *J* = 4.5Hz, 2H), 8.92 (d, *J* = 4.5Hz, 2H), 8.74 (d, *J* = 4.5Hz, 2H), 7.93 (d, J = 3.5Hz, 1H), 7.71 (t, J = 8.5Hz, 2H), 7.64 (d, J = 3.5Hz, 1H), 7.35 (d, J = 8Hz, 4H), 7.27-7.29 (m, 4H), 7.02 (d, J = 8.5Hz, 4H), 6.96 (d, J = 3.5Hz, 2H), 6.68 (d, J = 3.5Hz, 2H), 3.89 (t, J = 6.5Hz, 8H), 2.78 (t, J = 7.5Hz, 4H), 1.64-1.70 (m, 4H), 1.29 (s, 12H), 0.95-1.04 (m, 8H), 0.89-0.94 (m, 22H), 0.53-0.80 (m, 36H). ¹³CNMR (CDCl₃, 500Hz) δ_{C} 159.8, 151.8, 151.2, 150.6, 150.4, 144.5, 143.9, 141.7, 139.3, 132.4, 130.1, 129.9, 127.2, 126.0, 124.7, 122.2, 121.8, 121.4, 120.7, 114.8, 105.1, 68.5, 31.9, 31.5, 31.4, 30.2, 29.7, 29.3, 29.1, 28.9, 28.7, 28.6, 28.5, 28.4, 27.2, 25.1, 22.7, 22.3, 14.1, 14.0, 13.8. MS (ESI): Calcd for C₁₀₃H₁₂₃N₅O₆S₃Zn, 1688.68; found, 1686.42.

Synthesis of dye JP3

The preparation method was the same as that of dye **JP1**. ¹HNMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 9.62 (d, *J* = 4.5Hz, 2H), 9.49 (d, *J* = 4.5Hz, 2H), 8.87 (d, *J* = 4.5Hz, 2H), 8.84 (d, *J* = 4.5Hz, 2H), 7.82 (d, *J* = 8.4Hz, 2H), 7.71 (t, *J* = 8.4Hz, 2H), 7.49 (d, *J* = 8.8Hz, 4H), 7.45 (s, 1H), 7.26 (s, 1H), 7.20 (d, *J* = 8.8Hz, 4H), 7.06 (d, *J* = 3.2Hz, 2H), 7.02 (d, *J* = 8.4Hz, 4H), 6.70 (d, *J* = 3.2Hz, 2H), 3.87 (t, *J* = 6.4Hz, 8H), 2.79 (t, *J* = 7.2Hz, 4H), 1.65-1.72 (m, 4H), 1.25 (s, 12H), 0.95-1.02 (m, 8H), 0.81-0.89 (m, 14H), 0.61-0.66 (m, 8H), 0.42-0.57 (m, 36H). ¹³CNMR (CDCl₃, 500Hz) $\delta_{\rm C}$ 159.9, 151.6, 151.5, 150.8, 150.5, 147.3, 145.9, 145.3, 141.2, 134.8, 132.6, 132.3, 131.7, 131.4, 130.7, 130.2, 129.9, 126.5, 125.0, 124.9, 123.1, 122.1, 120.8, 117.4, 115.6, 105.2, 68.7, 31.7, 31.6, 31.4, 30.3, 29.7, 28.8, 28.7, 28.6, 28.5, 25.3, 22.7, 22.6, 22.3, 14.1, 13.9. MS (ESI): Calcd for C₁₁₁H₁₂₇N₅O₆S₃Zn, 1788.80; found, 1788.00.

Fig. S1 Emission spectra of YD2-O-C8, JP1, JP2 and JP3 in THF

Fig. S2 Fluorescence decay curves of (a) JP1, (b) JP2, (c) JP3 and (d) YD2-O-C8.

Fig. S3 The geometry optimized ground state molecular structures of (a) JP1, (b) JP2, (c) JP3 and (d) YD2-O-C8

References

[1] A.Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E.
W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M.Grätzel, *Science*, 2011, 334, 629-633.