Palladium nanoparticles immobilized on core-shell magnetic fibrous as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and Suzuki coupling reactions

Xuanduong Le, Zhengping Dong,*a Yansheng Liu,a Zhicheng Jin,a Huy-Thanh Do,b Minhdong Leb and Jiantai Ma*a

*aGansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.

bFaculty of Technical Physics and Chemistry, Le Quy Don Technical University, Hanoi, Vietnam.

* Corresponding author, E-mail addresses: dongzhp@lzu.edu.cn (Zhengping Dong), majiantai@lzu.edu.cn (Jiantai Ma).
Tel.: +86 0931 891 2311; Fax: +86 0931 891 2582.

List of Contents:

Fig. S1 UV-Vis spectra of 4-NP/NaBH₄ solution when adding Fe₃O₄@SiO₂@KCC-1 as catalyst at the reaction time of about 0 h and 2 h, inset image the colour change of the 4-NP/NaBH₄/Fe₃O₄@SiO₂@KCC-1 mixture at the reaction time of about 0 h and 2 h.

Table 1 The control reactions of Fe₃O₄@SiO₂@mSiO₂ and Fe₃O₄@SiO₂@mSiO₂-Pd(II) catalyst in the cross coupling reaction between 1-Iodo-4-nitrobenzene and phenylboronic acid were carried out.
Fig. S1 UV-Vis spectra of 4-NP/NaBH$_4$ solution when adding Fe$_3$O$_4$@SiO$_2$@KCC-1 as catalyst at the reaction time of about 0 h and 2 h, inset image the colour change of the 4-NP/NaBH$_4$/Fe$_3$O$_4$@SiO$_2$@KCC-1 mixture at the reaction time of about 0 h and 2 h.

Table 1

The control reactions of Fe$_3$O$_4$@SiO$_2$@KCC-1 and Pd/Fe$_3$O$_4$@SiO$_2$@KCC-1 catalyst in the cross coupling reaction between 1-Iodo-4-nitrobenzene and phenylboronic acid were carried out.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe$_3$O$_4$@SiO$_2$@KCC-1</td>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>Pd/Fe$_3$O$_4$@SiO$_2$@KCC-1</td>
<td>3</td>
<td>97</td>
</tr>
</tbody>
</table>

* Reaction condition: aryl halide (0.5 mmol), aryl boronic acid (0.75 mmol), base (1.0 mmol), ethanol 5.0 mL, 0.01 g catalyst, in air, 3 h.

* Yield was determined by GC analysis.