Supporting Information

Palladium Catalyst Coordinated in Knitting N-Heterocyclic Carbenes Porous Polymers for Efficient Suzuki-Miyaura Coupling Reactions

† School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Figure S1. TG for the precursors (Poly-NHC).

Figure S2. SEM images for Poly-NHC-1 and Poly-NHC-1-Pd$^{2+}$.
Figure S3. SEM images for Poly-NHC-2 and Poly-NHC-2-Pd2+

Figure S4. SEM images for Poly-NHC-3 and Poly-NHC-3-Pd2+

Figure S5. TEM images for Poly-NHC-1 and Poly-NHC-1-Pd2+

Figure S6. TEM images for Poly-NHC-2 and Poly-NHC-2-Pd2+
Figure S7. TEM images for Poly-NHC-3 and Poly-NHC-3-Pd\(^{2+}\)

Figure S8. \(\text{N}_2\) sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-1.

Figure S9. \(\text{N}_2\) sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-1-Pd\(^{2+}\).
Figure S10. N$_2$ sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-2.

Figure S11. N$_2$ sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-2-Pd$^{2+}$.

Figure S12. N$_2$ sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-3.
Figure S13. N₂ sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-3-Pd²⁺.