Electronic Supplementary Information

Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding

Wei-Li Song,† Xiao-Tian Guan,† Li-Zhen Fan,†,* Wen-Qiang Cao,‡ Chan-Yuan Wang,‖
Quan-Liang Zhao,§ Mao-Sheng Cao‡,*

†Institute of Advanced Materials and Technology, University of Science and Technology
Beijing, Beijing, 100083, P. R. China.

‡School of Materials Science and Engineering, Beijing Institute of Technology, Beijing,
100081, P. R. China.

§School of Electrical and Mechanical Engineering, North China University of
Technology, Beijing, 100144, P. R. China.

‖310 Department, Third Institution of China Aerospace Science & Industry, Beijing
100071, P. R. China.

* Corresponding Authors: Tel/Fax: +86 10 6233-3548, +86 10 6891-4062.
Email: fanlizhen@ustb.edu.cn (Li-Zhen Fan), caomaosheng@bit.edu.cn (Mao-Sheng Cao).
Figure S1 SEM images of the cross-section views on Fe$_3$O$_4$/GN-1 (a) and (b), Fe$_3$O$_4$/GN-2 (c) and (d), Fe$_3$O$_4$/GN-4 (e) and (f).
Figure S2 Relation of saturation magnetization and Fe₃O₄ loadings.
Figure S3. Fabrication of Fe₃O₄/RGO hybrids with 50 wt% Fe₃O₄.