Electronic Supplementary Information

Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition

Guizhen Wang, Xiange Peng, Lei Yu, Gengping Wan, Shiwei Lin and Yong Qin

Dr. G. Z. Wang, X. E. Peng, L. Yu, G. P. Wan and Prof. S. W. Lin
Key Laboratory of Chinese Education Ministry for Tropical Biological Resources, Hainan University, Haikou 570228, China
E-mail: wangengping001@163.com (G. P. Wan)
E-mail: lsw00@hotmail.com (S. W. Lin)

Prof. Y. Qin
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
E-mail: qinyong@sxicc.ac.cn (Y. Qin)
Fig. S1 XRD pattern of ZnO@NiO composites.

Fig. S2 HRTEM image of ZnO@NiO.
Fig. S3 (a) SEM of the ZnO@NiO and corresponding elemental mapping images of (b) Zn, (c) Ni and (d) O. Scale bar: 600 nm.

Fig. S4 SAED pattern of an individual ZnO@Ni nanorod.
Conventionally the relaxation process which can be described by the Cole-Cole semicircle has an important influence on permittivity behaviors of microwave absorption materials. According to the Debye dipolar relaxation, the relative complex permittivity (ε_r) can be expressed by the following equation,

$$
\varepsilon_r = \varepsilon' + i\varepsilon'' = \varepsilon_\infty + \frac{\varepsilon_s - \varepsilon_\infty}{1 + i\omega\tau_0}
$$

(1)

where τ_0, ε_s, and ε_∞ are the relaxation time, the static dielectric constant, and the dielectric constant at infinite frequency, respectively. From eq 1, it can be deduced that

$$
\varepsilon' = \varepsilon_\infty + \frac{\varepsilon_s - \varepsilon_\infty}{1 + (\omega\tau_0)^2}
$$

(2)

$$
\varepsilon'' = \frac{\omega\tau_0(\varepsilon_s - \varepsilon_\infty)}{1 + (\omega\tau_0)^2}
$$

(3)

According to eqs 2 and 3, the relationship between ε' and ε'' can be further deduced,

$$
(\varepsilon' - \frac{\varepsilon_s + \varepsilon_\infty}{2})^2 + (\varepsilon'')^2 = (\frac{\varepsilon_s - \varepsilon_\infty}{2})^2
$$

(4)

Thus the plot of ε' versus ε'' would be a single semicircle, which is usually defined as the Cole-Cole semicircle, and each semicircle corresponds to one Debye relaxation process. Plots of ε'' versus ε' for ZnO and ZnO@Ni composites are shown in Fig. S5, where four superimposed Cole-Cole semicircles are found for the ZnO@Ni sample.

Reference
Fig. S6 EDS of ZnO@Ni.

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass percent</th>
<th>Atom percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>17.41</td>
<td>46.09</td>
</tr>
<tr>
<td>Zn</td>
<td>77.19</td>
<td>50.01</td>
</tr>
<tr>
<td>Ni</td>
<td>5.4</td>
<td>3.9</td>
</tr>
</tbody>
</table>