Metal-Organic Framework-derived Porous Mn$_{1.8}$Fe$_{1.2}$O$_4$ Nanocubes with an interconnected channel structure as High-Performance Anodes for Lithium Ion Batteries

Fangcai Zhenga, Dequan Zhu$^{a#}$, Xiaohui Shi and Qianwang Chena,b

aHefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, China.

bHigh Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

E-mail: cqw@ustc.edu.cn. Fax and Tel: +86 551 63603005.
Figure S1. TEM image of Mn$_3$[Fe(CN)$_6$]$_2$·nH$_2$O nanocubes.

Figure S2. XRD pattern of Mn$_3$[Fe(CN)$_6$]$_2$·nH$_2$O nanocubes.
Figure S3. IR spectrum of $\text{Mn}_3\text{[Fe(CN)]}_6\cdot2n\text{H}_2\text{O}$ nanocubes.

Figure S4. TGA curve of $\text{Mn}_3\text{[Fe(CN)]}_6\cdot2n\text{H}_2\text{O}$ nanocubes under a flow of the mixed carrier gas (80 vol% He and 20 vol% O$_2$), with a heating rate of 20 °C min$^{-1}$.
Figure S5. IR absorbance variation of (a) H$_2$O, (b) CO$_2$, (c) NO$_2$ and (CN)$_2$ as a function of time.

Figure S6. MS intensity variation of (a) H$_2$O, (b) CO$_2$, (c) NO$_2$ and (CN)$_2$ as a function of time.
Figure S7. The high-magnification FESEM (a) and TEM (b) images of Mn$_{1.8}$Fe$_{1.2}$O$_4$ nanocubes.

Figure S8. The coulombic efficiency of the Mn$_{1.8}$Fe$_{1.2}$O$_4$ nanocubes for lithium storage at a current density of 200 mA g$^{-1}$.
Figure S9. Morphological analysis of the electrode cycled for 20 cycles at a current density of 200 mA g\(^{-1}\).

Figure S10. XRD pattern of as-prepared Mn\(_x\)Fe\(_{2-x}\)O\(_3\) obtained at 600 °C.
Figure S11. FESEM images of Mn$_x$Fe$_{2-x}$O$_3$ sample at different magnification (a and b). TEM images of Mn$_x$Fe$_{2-x}$O$_3$ sample at different magnification (c and d).

Figure S12. Discharge-charge curves of Mn$_x$Fe$_{2-x}$O$_3$ sample (600 °C) at a current density of 200 mA g$^{-1}$.
Figure S13. Rate capability test for the Mn$_x$Fe$_{2-x}$O$_3$ nanocubes at various current densities (100-1600 mA g$^{-1}$).