Supporting Information

Improving the mechanical stability of zirconium-based metal-organic frameworks by incorporation of acidic modulators

Ben Van De Voorde,a Ivo Stassen,a Bart Bueken,a Frederik Vermoortele,a Dirk De Vos,a Rob Ameloot,a Jin-Chong Tanb,* and Thomas D. Bennettc,*

aCentre for Surface Chemistry and Catalysis, KU Leuven, Arenbergpark 23, B-3001 Leuven, Belgium.
bDepartment of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
cDepartment of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom.

SI-1: Modulated sample characterization
SI-2: Powder X-ray Diffraction
SI-3: Scanning Electron Microscopy Infrared Spectroscopy
SI-4: Modulator Removal from UiO-66m TFA
SI-5: Gas Sorption and Pore Distribution Analysis
SI-6: Thermogravimetric Analysis
SI-7: IR Spectroscopy
Figure S1. Additional thermogravimetric analyses were performed to analyze the linker deficiency of each UiO-66 material by heating the samples at 3°C/min under an oxygen containing atmosphere. Weights were normalized with respect to the ZrO$_2$ residue left after heating up to 550°C.
Figure S2a. Powder X-ray diffraction patterns of MIL-140A after milling for the indicated lengths of time.

Figure S2b. Powder X-ray diffraction patterns of MIL-140B after milling for the indicated lengths of time.
Figure S2c. Powder X-ray diffraction patterns of MIL-140C after milling for the indicated lengths of time.

Figure S2d. Powder X-ray diffraction patterns of MIL-140D after milling for the indicated lengths of time.
Figure S2e. Powder X-ray diffraction patterns of UiO-66 after milling for the indicated lengths of time.

Figure S2f. Example of profile fitting for crystalline UiO-66.
Figure S2g. Powder X-ray diffraction patterns of UiO-66m TFA after milling for the indicated lengths of time.

Figure S2h. Powder X-ray diffraction patterns of ZIF-8 after milling for the indicated lengths of time.
Figure S2i. Powder X-ray diffraction patterns of UiO-66mh after milling for the indicated lengths of time.

Figure S2j. Powder X-ray diffraction patterns of UiO-66m ClA after milling for the indicated lengths of time.
Figure S2k. Powder X-ray diffraction patterns of UiO-66m AA after milling for the indicated lengths of time.

Figure S2l. Evolution of the integral breadth of the last remaining diffraction peak for MIL-140A-D.
Figure S3a. SEM images of samples of MIL-140A. Top – crystalline, middle – after ten minutes of ball-milling and bottom – after 25 minutes of ball-milling.
Figure S3b. SEM images of samples of MIL-140B. Top – crystalline, middle – after ten minutes of ball-milling and bottom – after 25 minutes of ball-milling.
Figure S3c. SEM images of samples of MIL-140C. Top – crystalline, middle – after ten minutes of ball-milling and bottom – after 25 minutes of ball-milling.
Figure S3d. SEM images of samples of MIL-140D. Top – crystalline, middle – after ten minutes of ball-milling and bottom – after 25 minutes of ball-milling.
Figure S3e. SEM images of samples of UiO-66. Top – crystalline, middle – after ten minutes of ball-milling and bottom – after 25 minutes of ball-milling.
Figure S3f. SEM images of samples of UiO-66m TFA. Top – crystalline, middle – after ten minutes of ball-milling and bottom – after 25 minutes of ball-milling.
Figure S3g. SEM images of samples of ZIF-8. Top – crystalline, middle – after ten minutes of ball-milling and bottom – after 25 minutes of ball-milling.
Figure S4a. Normalized FTIR spectra of UiO-66m TFA at 50°C (blue) and UiO-66m TFA at 350°C (black). The stars indicate typical vibrational signals for trifluoroacetate.

By treating UiO-66m TFA for several hours at 350°C, TFA is removed from the cluster. The material is designated as UiO-66mh, and was as well subjected to the milling treatment. The infrared spectra indicate the removal of TFA for the most characteristic peaks after a thermal treatment at 350°C as indicated by the red stars.
SI-5: N$_2$ physisorption and pore size distribution analysis

It is important to note that the pore-size distributions were calculated with the Tarazona NLDFT model using a regularization factor 0.00100. This model is not specific for MOF structures, however the qualitative analysis of the PSD’s is correct.

Figure S5a. N$_2$ physisorption isotherms for the crystalline MIL-140(A-D), UiO-66, UiO-66m TFA and ZIF-8.

Figure S5b. Pore size distributional analysis for crystalline (black) and amorphized (red) MIL-140A.
Figure S5c. Pore size distributional analysis for crystalline (black) and amorphized (red) MIL-140B.

Figure S5d. Pore size distributional analysis for crystalline (black) and amorphized (red) MIL-140C.
Figure S5e. Pore size distributional analysis for crystalline (black) and amorphized (red) MIL-140D.

Figure S5f. Pore size distributional analysis for crystalline (black) and amorphized (red) UiO-66.
Figure S5g. Pore size distributional analysis for crystalline (black) and amorphized (red) ZIF-8.
SI-6: Thermogravimetric Analysis

MIL-140A

MIL-140B

MIL-140C

MIL-140D

UiO-66

UiO-66m TFA

ZIF-8

UiO-66m AA
Figure S6a. Thermogravimetric (TGA) traces under N$_2$ atmosphere (solid lines) and derivative TGA curves (dashed lines) of crystalline (black) and amorphous (red) samples of the zirconium containing frameworks studied, along with ZIF-8.
SI-7: IR spectroscopy

All samples were outgassed at 50°C under vacuum unless otherwise indicated. The absorbance is normalised for all spectra. Slight variance from the results in Figure 5 arises from slightly different outgassing procedures.

Figure S7a. Infra-red spectroscopy spectra for MIL-140A and the amorphized framework for the regions (top) 400-800 cm\(^{-1}\), (middle) 1600-1800 cm\(^{-1}\) and (bottom) 3100-3800 cm\(^{-1}\).
Figure S7b. Infra-red spectroscopy spectra for UiO-66 and the amorphized framework for the regions (top) 400-800 cm\(^{-1}\), (middle) 1600-1800 cm\(^{-1}\) and (bottom) 3100-3800 cm\(^{-1}\).

Figure S7c. Infra-red spectroscopy spectra for UiO-66m TFA and the framework after 25 minutes of ball-milling for the regions (top) 400-800 cm\(^{-1}\), (middle) 1600-1800 cm\(^{-1}\) and (bottom) 3100-3800 cm\(^{-1}\).