Supplementary information:

N-type thermoelectric materials based on CuTCNQ nanocrystals and CuTCNQ nanorod arrays

Yuanhui Sun,a,b Fengjiao Zhang,a,b Yimeng Sun,a Chong’an Di, a, Wei Xu,a and Daoben Zhu*a

a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
b University of Chinese Academy of Sciences, Beijing, 100049, China.
Figure S1. XRD patterns for a) CuTCNQ phase I needles, b) CuTCNQ phase II platelets and CuTCNQ-F$_2$TCNQ blends (c) B1-CuTCNQ, (d) B2-CuTCNQ, (e) B3-CuTCNQ and (f) B4-CuTCNQ.
Figure S2. X-Ray photoelectron spectra of CuTCNQ blends a) with 0.97% F$_4$TCNQ ratio (B1-CuTCNQ), b) with 2.98% F$_4$TCNQ ratio (B2-CuTCNQ); c) with 3.2% F$_4$TCNQ ratio (B3-CuTCNQ) and d) with 6.59% F$_4$TCNQ ratio (B4-CuTCNQ). (Inset: F 1s peak spectra).
Figure S3. (Color online) Temperature dependence of a) Seebeck coefficient, b) electrical conductivity and c) power factors of NC-CuTCNQ and CuTCNQ blends with a series of F₄TCNQ concentration (mol %).

Figure S4. The SEM image of NrA-CuTCNQ films prepared in situ on 30 nm copper film.
Figure S5. The resistance in the direction of the nanorods versus thickness of NrA-CuTCNQ films.