Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Zinc-cobalt oxides as efficient water oxidation catalysts: the promotion effect of ZnO

Feng Rong,^{a,b} Jiao Zhao,^a Panpan Su,^{a,b} Yi Yao,^{a,b} Mingrun Li, ^a Qihua Yang,^{*a} Can Li^{*a}

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

^b University of Chinese Academy of Sciences, Beijing 100039, China

* To whom correspondence should be addressed. Email Address: yangqh@dicp.ac.cn; canli@dicp.ac.cn. Tel: 86-411-84379552; 86-411-84379070. Fax Number: 86-411-84694447

Figure S1. TG profile of Zn-Co_{1.0}-coordination polymers.

Figure S2. SEM images of a section of $Zn-Co_x$ -coordination polymer precursors and $ZnCo_xO_y$ oxides, the ligand PTCDA was abbreviated as P in the images.

Figure S3. SEM images of a section of ZnCo_xO_y oxides.

Figure S4. A, Elemental mapping of Zn and Co in ZnCo_{3.0}O; B, Selected-area electron diffraction (SAED) analyses (b) toward (a), Fourier transforming (d) to the whole area of HR-TEM (c).

Element distribution analysis on the selected nano-region (Figure S4 A) shows the similarity of Zn and Co, which proves that no phase separation is occurred in $ZnCo_{3.0}O_y$. Polycrystalline diffraction ring (Figure S4 B (b)) shows no specific diffractive (d_{002} =2.6Å) of ZnO, which is different from Co₃O₄. From Fourier transforming (Figure S4 B (d)), the specific diffractive (d_{002} =2.6Å) of ZnO was not found either.

Figure S5. Recycling data of ZnCo_{1.0}O_y in water oxidation using Ce(IV) as oxidants.

Figure S6. XRD pattern of ZnCo_{1.0}O_y after water oxidation using Ce(IV) as oxidant.

Figure S7. Recycling data of $ZnCo_{1.0}O_y$ in water oxidation utilizing a reactor – gas chromatography (GC) combination system.

Figure S8. XRD pattern of ZnCo_{1.0}O_y after water oxidation in a reactor – gas chromatography (GC) combination system.