Supporting Information

Uniform Double-Shell Hollow Microspheres from New Polymer-Backbone-Transition Method as Effective Acoustic Echo Imaging Contrast Agents

Peng Yang, Jing Ding, Jia Guo, Weibin Shi, Jack J. Hu, and Changchun Wang

"State Key Laboratory of Molecular Engineering of Polymers, and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China. Fax: +86-21-65640293; Tel: +86-21-65642385; E-mail: ccwang@fudan.edu.cn"

"Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 200092, China."

"Department of Chemistry and Integrated Biosciences, University of Akron, Akron, OH 44325-3601, USA"
Figure S1. The curves of dispersion stability of polymer microbubbles: (a) the stabilization time of the microbubbles with different sizes and the same shell thickness of approximate 65 nm in water as a function of the size; (b) the stabilization time of the microbubbles with the same size of 1.1 μm and different shell thicknesses as a function of shell thickness.

Figure S2. TEM images of the organosilica/PNIPAM core/shell microspheres: (a) NIPAM/VOMs = 5:1, 25 mg AIBN, (b) NIPAM/VOMs = 10:1, (c) NIPAM/VOMs = 10:1, 100 mg AIBN, (d) NIPAM/VOMs = 10:1, 200 mg AIBN. All scale bars are 1.0 μm.
Figure S3 Results from DLS measurements at various temperatures of ds-HPMs with different shell thickness: (a) ds-HPMs-1, (b) ds-HPMs-2, (c) ds-HPMs-3, (d) ds-HPMs-4.

Figure S4 In vitro ultrasound images of ds-HPMs-2 under B-mode in physiological saline solution with different concentration from 0.0-1.0 mg·mL$^{-1}$ at 4.0 M Hz