Supplementary Information: Crumpled reduced graphene oxide-polyamidoamine dendrimer hybrid nanoparticles for the preparation of electrochemical biosensor

Elena Araque, Reynaldo Villalonga, María Gamella, Paloma Martínez-Ruiz, Julio Reviejo, José M. Pingarrón

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Fig. 1S. X-Ray diffraction of GO (a), Sil-GO (b) and PAMAM-Sil-rGO (c).

Fig. 2S. FT-IR analysis for GO (a), Sil-GO (b) and PAMAM-Sil-rGO (c).

Fig. 3S. TG (A) and DTG (B) analysis for GO (a), Sil-GO (b) and PAMAM-Sil-rGO (c).
Fig. 4S. FE-SEM images of PAMAM-Sil-rGO crumpled nanostructures.
Fig. 5S. Influence of the amount of PAMAM-Sil-rGO (A), enzyme (B), glutaraldehyde (C), time of incubation (D), applied potential (E) and pH (F) on the amperometric response of the electrode toward cathecol (100-500 nM).
Fig. 6S. Influence of the electrode composition on the amperometric response toward cathecol (100-500 nM).

Fig. 7S. Amperometric responses measured with a single Tyr/PAMAM-Sil-rGO/GCE biosensor for 2.0 μM cathecol as a function of the storage time at 4°C under dry (●) and wet, 50 mM sodium phosphate buffer, pH 7.0, (○) conditions.

Department of Analytical Chemistry & Department of Organic Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid Spain. Fax: +34 913944329; Tel: +34 913944315; E-mail: pingarro@quim.ucm.es, rvillalonga@quim.ucm.es