Electronic Supplementary Material

Dendrimeric Antigens-Silica Particles Composites: An Innovative Approach for IgE Quantification.
Yolanda Vida, a,b,‡ María I. Montañez, a,c,‡ Daniel Collado, a,b Francisco Nájera, a,b Adriana Ariza, a,c Miguel Blanca, a,d Maria J. Torres, a,d Cristobalina Mayorga, a,c and Ezequiel Perez-Inestrosa a,b

a Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain. Tel: +34 952 367 609; E-mail: inestrosa@uma.es
b Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain.
Fax: +34 952131941; Tel: +34 952137565; E-mail: inestrosa@uma.es
c Research laboratory, Carlos Haya Hospital, 29009 Málaga, Spain
d Allergy Service, Carlos Haya Hospital, 29009 Málaga, Spain
‡ These authors contributed equally to this work

Table of Contents.
1. TEM images of the obtained particles
2. Calculation of numbers of spheres and surface area per gram of SiO₂
3. Calculation of functional groups in the spheres

1. TEM images of the obtained particles
A suspension of monodisperse sub-micron silica-based spheres was obtained following the Stöber’s standard method.
It is found from figure 1 that no clear differences in size and morphology between SiO₂ and SiO₂-DG₂ were observed, suggesting: 1) the additional organic group does not increase the volume of the inorganic particle obviously and 2) no aggregation occurs during the surface modification process.

Figure S1. TEM images of the obtained particles: a) SiO₂; b) SiO₂-APS; c) SiO₂-Suc; d) SiO₂-DG₂.
2. Calculation of numbers of spheres and surface area per gram of SiO$_2$.
Values were calculated on the assumption that the silica particles were perfect spheres of 2.2 g/cm3 density.
Density of SiO$_2$ particles: 2.2 g/cm3
Diameter of 1 sphere = 450 nm
Volume of 1 sphere: $\frac{4}{3}\pi r^3; V = \frac{4}{3}\pi(450/2 \text{ nm})^3 = 47.7\times10^6 \text{ nm}^3$
Mass of 1 sphere: $47.7\times10^6 \text{ nm}^3 \times 2.2\cdot g/10^{-21} \text{ nm}^3 = 1.05\times10^{-13} \text{ g}$
Number of spheres per gram of SiO$_2$ sample:
\[1 \text{ g} \times \frac{1 \text{ sphere}}{1.05\times10^{-13} \text{ g}} = 9.5\times10^{12} \text{ spheres} \]
Area of 1 sphere: $4\pi r^2; A = 4\pi(450/2 \text{ nm})^2 = 63.6\times10^4 \text{ nm}^2$
Surface area per gram of SiO$_2$ sample:
\[63.6\times10^4 \text{ nm}^2/\text{sphere} \times 9.5\times10^{12} \text{ spheres} = 6.1\times10^{18} \text{ nm}^2 \]

3. Calculation of functional groups in the spheres.
30 µmol amino groups per gram of SiO$_2$-DG$_2$ sample.

PAMAM-G2 per gram of SiO$_2$-DG$_2$ sample:
30 µmol amino groups x 1 µmol PAMAM-G2/15 µmol amino groups = 2 µmol PAMAM-G2
\[2\times10^{-6} \text{ mol PAMAM-G2} \times 6.02\times10^{23} \text{ PAMAM-G2/mol PAMAM-G2} = 12\times10^{17} \text{ PAMAM-G2} \]

PAMAM-G2 per nm2:
\[12\times10^{17} \text{ PAMAM-G2/g SiO}_2 \times 1 \text{ g SiO}_2/6.1\times10^{18} \text{ nm}^2 = 0.2 \text{ PAMAM-G2/nm}^2 \]