Supporting Information

Eumelanin thin films: solution-processing, growth, and charge transport properties

Julia Wünsche, a Fabio Cicoira, b Carlos F. O. Graeff, c and Clara Santato* a

a Département de génie physique, École Polytechnique de Montréal, CP 6079, Succursale Centre-Ville, Montréal, Québec H3C 3A7 (Canada); Tel: 514 340-4711 # 2586; E-mail: clara.santato@polymtl.ca

b Département de génie chimique, École Polytechnique de Montréal, CP 6079, Succursale Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

c DF-FC, UNESP - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, 17033-360 Bauru (Brazil)
Fig S1 1 µm ×1 µm AFM images of 30 nm thick films of different eumelanins spin-coated from DMSO and NH₃(aq) suspensions as indicated. The root mean square roughness Rq is indicated for each film.

Fig. S2 10 µm × 10 µm AFM images of drop cast films of (a) DMSO melanin on glass and (b) Sigma melanin on Si. In both cases, a DMSO suspension of 3 mg/ml concentration was used. The root mean square roughness Rq is indicated for each film.
Fig. S3 10 µm ×10 µm AFM images of *DMSO melanin* films of about 8 and 15 nm thickness, spin-coated from DMSO suspension (top) and the corresponding height histograms (bottom). Z-scale: 4 nm. The morphology is dominated by planar islands, about 1 nm high.

Fig. S4 10 µm ×10 µm AFM image of a *Dopa melanin* drop cast from DMSO suspension (3 mg/ml) on SiO₂ and height profile corresponding to the white line. Z-scale: 5 nm. The surface of the film is covered with holes, about 1.5 nm deep.
Fig. S5 Transient current measurement on a *Sigma melanin* film, about 30 nm thick, at 90% RH and an electrical bias of 0.6 V. $L = 10 \, \mu\text{m}$ and $W = 7810 \, \mu\text{m}$. The current decreases more and more slowly without reaching a steady state.