Supporting Information

Experimental

Preparation of well-dispersed magnetite (Fe₃O₄) particles.

Briefly, 10.25 g of FeCl₃· $6H_2O$ and 10.0 g of sodium acetate were dissolved in 200 mL of ethylene glycol under vigorous stir, followed by the addition of polyethylene glycol (PEG, MW 2000) 2.5 g and sonication for 1 h. The resulting homogeneous yellow solution (90 mL) was transferred to a Teflon-lined stainless-steel autoclave (120 mL capacity). The autoclave was sealed and heated at 200 °C for 12 h and then naturally cooled to room temperature. The black Fe₃O₄ particles were collected with the help of a magnet, followed by washing six times with ethanol and deionized water, and finally dried at 60 °C overnight.

Synthesis of Ln(OH)CO3 (Ln=Er,Tm,Yb,Lu) particles.

The precursor particles of $Ln(OH)CO_3$ were prepared by the chemical precipitation method in accordance with the following procedure: First, $Ln(NO_3)_3$ aqueous solution (0.25 M, 1.0 mL) and urea (1.0 g) were dissolved into deionized water (50 mL), followed by ultrasonication for 10 min. Subsequently, the mixture was magnetically stirred for 2 h in a water bath maintained at 90 °C. The resulting particles were collected after centrifugation and washed with deionized water, and then dried at 60 °C overnight.

Synthesis of $xNH_4F \cdot yLnF_3$ (Ln=Er,Tm,Yb) products using Ln(OH)CO₃ particles as precursors.

 $Ln(OH)CO_3$ particles (18 mg) were dispersed into deionized water (50 mL) by ultrasonication for 10 min, followed by the addition of NH₄F (2 mmol). Then the suspension solution was mechanically stirred for 2 h at 70 °C. The obtained NH₄LnF_x products were collected, washed with ethanol and water, and then dried at 60 °C overnight.

Preparation of Tryptic Digests of Standard Proteins.

 β -casein and BSA (1 mg) were each dissolved in NH₄HCO₃ solution (50mM, 1 mL). Protein solutions were then incubated with trypsin at an enzyme/substrate ratio of 1:50 (w/w) for 16 h at 37 °C to produce proteolytic digests. The tryptic peptide mixtures were stored at -20 °C until further use.

Preparation of Tryptic Digest of Proteins in Nonfat Milk.

For in-solution digestion, nonfat milk (30 μ L) was first denatured by the ammonium bicarbonate solution (50 mM, 250 μ L) containing urea (8 M) and incubated at 37 °C for 30 min. Then, DTT (Dithiothreitol) solution (200 mM, 25 μ L) was introduced, and the temperature was maintained at

55 °C for 1 h. After cooled to room temperature, the IAA (Indole-3-acetic acid) solution (200 mM, 50 μ L) was added and the mixture was kept in the dark for 3 h. Finally, the resulting sample was diluted to 1 mL with the ammonium bicarbonate solution (50 mM) and incubated with trypsin (2 mg/mL, 10 μ L) at 37 °C for 18 h. The tryptic peptide mixtures were stored at -20 °C until further use.

Sample Preparation of Human Serum.

Blood sample donated by a healthy person was collected in 5 mL amounts, allowed to clot at room temperature for up to 1 h, and centrifuged for 5 min at 1000 rpm. Sera (upper phase) were aliquoted and stored frozen box at -20° C. Before use, 10 µL of the serum sample was diluted with 900 µL of 50% (v/v) acetonitrile aqueous solution containing 0.1% TFA, and without any other purication and tedious treatment, the serum sample was ready for enrichment.

A more detailed explanation on the possible formation mechanism of the flowerlike γ -Fe₂O₃@xNH₄F·yLuF₃ core-shell microspheres

A possible mechanism involved the phase transformation reaction and the self-assembly growth in situ was proposed to account for the formation of the flowerlike γ -Fe₂O₃@xNH₄F·yLuF₃ core-shell microspheres. We guess that in the process of the phase transformation reaction, the O²⁻ in Lu₂O₃ was first replaced by F ions via an ion-exchange reaction due to stronger interaction between Lu³⁺ and F, and the excess F ions simultaneously coordinated with Lu³⁺ to form coordination anions [LuF_x^{(x-3)-}], then the LuF_x^{(x-3)-} coordination anions further reacted with NH₄⁺ through electrostatic attraction to form xNH₄F·yLuF₃ species, and finally the xNH₄F·yLuF₃ species became crystal nuclei for self-assembly growth. In the course of the self-assembly growth in situ, the xNH₄F·yLuF₃ crystal nuclei quickly grew up to form some scraggly interlaced 2D thin nanosheets, and simultaneously accompanied by the gradual etching of the Lu₂O₃ shells which provide the Lu³⁺ resources. Subsequently these 2D epitaxial nanosheets gradually became bigger and bigger along independent directions until the Lu³⁺ resources were exhausted, and spontaneously in-situ self-assembled into 3D hierarchical shells.

Figures:

Fig. S1. a) SEM and b) TEM images of the pristine Fe₃O₄ particles.

Fig. S2. Characterization of $Fe_3O_4@Lu(OH)CO_3$ and γ - $Fe_2O_3@Lu_2O_3$ microspheres: a) SEM, b and c) TEM images of the $Fe_3O_4@Lu(OH)CO_3$ microspheres; d) SEM, e) TEM and f) HRTEM images of the γ - $Fe_2O_3@Lu_2O_3$ microspheres; g) XRD patterns and h) FTIR spectra of the Fe_3O_4 . $Fe_3O_4@Lu(OH)CO_3$ and γ - $Fe_2O_3@Lu_2O_3$ microspheres; i) EDS spectra of the $Fe_3O_4@Lu(OH)CO_3$ and the γ - $Fe_2O_3@Lu_2O_3$ microspheres.

Fig. S3 Characterizations of Lu(OH)CO₃ and Lu₂O₃ microspheres: a) SEM image of Lu(OH)CO₃ obtained through an urea-based homogeneous precipitation reaction. b) TEM image of Lu(OH)CO₃. c) SEM image of Lu₂O₃ obtained from the calcination treatment of Lu(OH)CO₃ at 550 °C for 2 h. d) TEM image of Lu₂O₃. e) Selected Area Electron Diffraction (SAED) image of Lu₂O₃, indicating the Lu₂O₃ microspheres are polycrystalline. f) XRD patterns of the

Lu(OH)CO₃ and Lu₂O₃ microspheres. g) FTIR spectra of the Lu(OH)CO₃ and Lu₂O₃ microspheres.

Note: After the calcination treatment at 550 °C, the Fe₃O₄ cores were transformed into γ -Fe₂O₃, and the Lu(OH)CO₃ shells were decomposed into Lu₂O₃, CO₂ and H₂O. Some CO₂ molecules can be inevitably adsorbed by the magnetic cores due to the strong interaction between CO₂ and iron ions under the high temperature [ref. 44]. Thus, it can infer that the CO_2 molecules were mainly adsorbed by the magnetic cores rather than be included in the shells. The reasons are as follows. Firstly, after the calcination, the adsorption peak at 2339 cm⁻¹ clearly appear in the FTIR spectrum of y-Fe₂O₃@Lu₂O₃, while it can not be observed in the FTIR spectrum of precursor Fe₃O₄@Lu(OH)CO₃ (Fig. S2h). This indicates that the CO₂ is derived from thermo-decomposition of the Lu(OH)CO₃. Secondly, no CO₂ adsorption peak at 2337 cm⁻¹ can be observed in the FTIR spectra of Lu₂O₃ obtained from the decomposition of Lu(OH)CO₃ microspheres (see Fig. S3), which indicated that all of the CO₂ produced by thermo-decomposition of the Lu(OH)CO₃ was released into the air in the absence of magnetic cores. Finally, the flowerlike product prepared by the precursor Fe₃O₄@Lu(OH)CO₃, no CO₂ adsorption peak at 2337 cm⁻¹ can be observed in the FTIR spectrum of the flowerlike product (see Fig. 6). Based on the above analysis, we believe that the CO_2 produced from the decomposition of Lu(OH)CO₃ and was mainly adsorbed by the magnetic cores.

Fig. S4 a, b) TEM images, d) XRD pattern and e) FTIR spectra of the γ -Fe₂O₃/NH₄Lu₂F₇ conjunct; c) HRTEM image and f) EDS of the NH₄Lu₂F₇ blocky particle. γ -Fe₂O₃@Lu₂O₃ microspheres (30 mg) were used as precursor. The amount of NH₄F is 30 mmol and the ion-exchange reaction temperature is 70°C. * indicates the diffraction peaks of γ -Fe₂O₃.

Fig. S5 Representative SEM images of ion-exchange products: A) $xNH_4F \cdot yErF_3$, B) $xNH_4F \cdot yTmF_3$ and C) $xNH_4F \cdot yYbF_3$ obtained under controlled conditions from a) $Er(OH)CO_3$, b) $Tm(OH)CO_3$ and c) $Yb(OH)CO_3$ microspheres, respectively. Amount of the $Ln(OH)CO_3$ (Ln=Er, Tm, Yb) precursor and the amount of NH_4F is 18 mg and 2 mmol, respectively. The phase transformation reaction temperature is 70 °C. (All scale bars are 1 μ m)

Fig. S6 MALDI-TOF mass spectra of a) β -casein digest (5×10⁻⁷ M), b) the tryptic digests of the nonfat milk treated without the γ -Fe₂O₃@xNH₄F·yLuF₃ affinity microspheres.

Fig. S7 MALDI-TOF spectra of peptides from a mixture of β -casein and BSA (1:10, molar ratio) a) before and b) after treatment with γ -Fe₂O₃@xNH₄F·yLuF₃. * indicates phosphorylated peptides, # indicates their dephosphorylated and dehydration counterparts, and \blacklozenge indicates the phosphopeptides from α -casein.

Table S1. The phosphopeptides captured by γ -Fe₂O₃@xNH₄F·yLuF₃ from tryptic digest of β -casein.

No.	$[M+H]^+$	Protein	Phosphorylation site	Amino acid sequence
1	2061.9	β-casein	1	FQ[pS]EEQQQTELQDK
2	2556.0	β-casein	1	FQ[pS]EEQQQTEDELQDKIHPF
3	3122.3	β-casein	4	ELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR

Table S2. The phosphopeptides captured by γ -Fe₂O₃@xNH₄F·yLuF₃ from tryptic digest of non-fat milk.

No.	$[M+H]^+$	Protein	Phosphorylation site	Amino acid sequence
1	1660.8	αS1-casein	1	VPQLEIVPN[pS]AEER
2	1927.7	αS1-casein	2	DIG[pS]E[pS]TEDQAMEDIK
3	2061.9	β-casein	1	FQ[pS]EEQQQTELQDK
4	2886.5	β-casein	3	ELEELNVPGEIVESL[pS][pS][pS]EESITR
5	2966.2	β-casein	4	ELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR
6	3009.1	αS2-casein	4	NANEEEYSIG[pS][pS][pS]EE[pS]AEVATEEVK
7	3122.3	β-casein	4	ELEELNVPGEIVE[pS]L[pS][pS]EESITR

Table S3. The phosphopeptides captured by γ -Fe₂O₃@xNH₄F·yLuF₃ from human serum.

No.	$[M+H]^+$	Phosphorylation site	Amino acid sequence
HS1	1545.8	1	D[pS]GEGDFLAEGGGVR
HS2	1616.9	1	AD[pS]GEGDFLAEGGGVR