Electronic Supporting Information

Characterization of Carbon-Coated Magnetic Nanoparticles using Clinical Blood Coagulation Assays: Effect of PEG-Functionalization and Comparison to Silica Nanoparticles

Lukas Birchera,b,*, Oliver M. Theusingera,*, Silvan Lochera, Philipp Eugstera,b, Birgit Roth-Z’graggena,b, Christoph M. Schumacherc, Jan-Dirk Studtd, Wendelin J. Starkc, Beatrice Beck-Schimmera,b, Inge K. Herrmanna,b,*

a Institute of Anesthesiology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
b Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
c ETH Zurich, Institute for Chemical and Bioengineering, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.
d Division of Hematology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.

*Corresponding Author:
Dr. Inge K. Herrmann
University and University Hospital Zurich
Rämistrasse 100
8091 Zurich, SWITZERLAND
ingekherrmann@gmail.com
+41 (0)44 255 3413
Figure S1: Transmission Electronmicrographs (TEM) of unmodified (left) and PEGylated carbon-coated iron carbide nanoparticles (right). Infrared spectra of unmodified (bottom trace, black) and PEGylated nanoparticles (top trace, red) showing the characteristic C-O-C band at ~1100 cm\(^{-1}\). Protein adsorption measurements for human serum albumin (HSA) and human fibrinogen. HSA was significantly more adsorbed on unmodified particles compared to PEGylated ones (p=0.01). In comparison to HSA, human fibrinogen was significantly less adsorbed on unmodified particles (p=0.023). For PEGylated nanoparticles, fibrinogen adsorption on was comparable to HSA adsorption.