Electronic Supplementary Information

Multiwalled carbon nanotubes/tetra-β-isooheptyloxyphthalocyanine cobalt(II) composite with high dispersibility for electrochemical detection of ascorbic acid

Miao Shi, a Zhimin Chen, *a Liangxiao Guo, a Xiuhua Liang, a Jialin Zhang, a Chunying He, a Bin Wang a and Yiqun Wu a,b

a Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, 74# Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China;
b Shanghai Institutes of Optics and Fine Mechanics, Chinese Academy of Sciences, 390# Qinghe Road, Jiading District, Shanghai 201800, People’s Republic of China.

Corresponding author E-mail: zmchen@siom.ac.cn
Tel.: +86 451 8660 9145,
Fax: +86 451 8660 9145
Experiment details

1.1. Materials

All chemicals and solvents in this work were of analytical grade and were used as-received. 5-Methyl-1-hexanol and 4-nitrophthalonitrile were purchased from Sigma-Aldrich Co. LLC. and Acros Chemical Co., respectively, and were used without further purification. The synthetic scheme of tetra-β-isoheptyloxyphthalocyanine cobalt(II) (PcCo) is shown in scheme S1.

![Synthetical scheme of tetra-β-isoheptyloxyphthalocyanine cobalt(II)](image)

Scheme S1. Synthetical scheme of tetra-β-isoheptyloxyphthalocyanine cobalt(II)

1.2. Instrument and methods

Elemental analyses of C, H and N were carried out on a Vario EL elemental analyzer. 1H NMR spectra (CDCl$_3$ solutions) were recorded at 500 MHz on a Bruker Advance AV-500 instrument. EI and MALDI-TOF mass spectra were performed using an Agilent spectrometer (HP 5973N) and a Bruker microflex LT (Bruker Daltonics, Bremen, Germany) mass spectrometer, respectively. UV/Vis absorption spectra were recorded with a Lambda 35 UV/VIS spectrometer (Perkin-Elmer, USA). FT-IR spectra were recorded on a Nicolet FT-IR NEXUS spectrometer (Thermo
Scientific).

1.3. Synthesis of 4-isoheptyloxyphthalonitrile

5-Methyl-1-hexanol (5.3 g, 0.045 mol) was dissolved in DMF (60 mL) under a nitrogen atmosphere and 4-nitrophthalonitrile (5.3 g, 0.06 mol) was added to the solution. After stirring for 10 min, finely ground anhydrous potassium carbonate (K$_2$CO$_3$) (10.0 g, 0.072 mol) was added portion-wise over 3 d with efficient stirring. The reaction mixture was stirred under nitrogen at room temperature for 5 days. Then the solution was poured into ice-water (100 mL) and then was extracted with CHCl$_3$. The organic extracts were dried over anhydrous Na$_2$SO$_4$ and concentrated under vacuum to give yellow oil. After the crude product was purified by silica gel chromatography with an eluent CHCl$_3$/CH$_3$OH (20:1), and 4-isoheptyloxyphthalonitrile was obtained. Yield: 4.03 g (55%). Anal. Calcd (found) for C$_{15}$H$_{18}$N$_2$O: C, 74.35 (74.28); H, 7.49 (7.57); N, 11.56 (11.61). 1H NMR (CDCl$_3$, TMS, δ ppm): 0.93 (s, 6H, CH$_3$), 1.27 (m, 2H, CH$_2$), 1.30 (m, 2H, CH$_2$), 1.64 (m, 1H, CH), 1.68 (m, 2H, CH$_2$), 4.31 (t, 2H, CH$_2$), 7.19 (d, 1H), 7.23 (d, 1H), 7.67 (t, 1H). FT-IR spectra (KBr pellets) ν: 3082, 2961, 2937, 2874, 2230, 1597, 1560, 1491, 1320, 1253, 1092, 980, 836, 523 cm$^{-1}$. EI-MS Calcd (Found): m/z= 242(242)[M$^+$].

1.4. Synthesis of tetra-β-isoheptyloxyphthalocyanine cobalt(II) (PcCo)

4-isoheptyloxyphthalonitrile (0.54 g, 2.25 mmol), anhydrous CoCl$_2$ (0.2 g, 1.5 mmol) and n-pentanol (12 mL) were placed in a round-bottom flask in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.8 mL) under a nitrogen atmosphere and held at reflux temperature for 12 h. After cooling to room temperature, the solvent was eliminated by vacuum distillation. The crude product was purified by silica gel column chromatography using toluene as eluent to give blue crystals of tetra-β-isoheptyloxyphthalocyanine cobalt(II) (PcCo). Yield: 0.18 g (32%). Anal. Calcd (found) for C$_{60}$H$_{72}$N$_8$O$_4$Co: C, 70.09 (70.02); H, 7.06 (6.99); N, 10.90 (10.84). Electronic absorption spectrum (UV-Vis) in CH$_2$Cl$_2$: λ_{max} (nm) = 669, 605. FT-IR spectra (KBr pellets) ν: 2962, 2934, 2874, 1611, 1526, 1468, 1416, 1345, 1268, 1236,
1123, 1098, 1061, 974, 819, 751 cm\(^{-1}\). MALDI-MS Calcd (Found): \(m/z=1027.50(1027.42)\ [M^+]\), 2055.00(2054.87)\[2M^+\], 3082.50(3082.97)\[3M^+\].

![MALDI mass spectra of tetra-\(\beta\)-isoheptyloxyphthalocyanine cobalt(II)](image)

Fig. S1 MALDI mass spectra of tetra-\(\beta\)-isoheptyloxyphthalocyanine cobalt(II)

![CVs of aMWCNT/PcCo/GCE in 0.1 M PBS (pH = 7.0) containing 0 mM (black line) and 1.0 mM AA (red line), respectively, scan rate: 10 mV·s\(^{-1}\).](image)

Fig. S2 CVs of aMWCNT/PcCo/GCE in 0.1 M PBS (pH = 7.0) containing 0 mM (black line) and 1.0 mM AA (red line), respectively, scan rate: 10 mV·s\(^{-1}\).
Fig. S3 CVs of aMWCNT/PcCo/GCE in 0.1 M PBS (pH = 7.0) with different AA concentrations (0, 0.02, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.6, 2.0, 2.4, 2.8 and 3.2 mM), scan rate: 10 mV·s\(^{-1}\). Inset image shows the calibration linear relationship of currents versus the AA concentration.

Table S1 Comparison of the analytical performance of different AA biosensors

<table>
<thead>
<tr>
<th>electrode</th>
<th>linear range (μM)</th>
<th>limit detection (μM)</th>
<th>overpotential (mV)</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDSP/CPE(^a,1)</td>
<td>150-8000</td>
<td>3.775</td>
<td>400</td>
<td>1</td>
</tr>
<tr>
<td>PANI/SPCE(^b,2)</td>
<td>30-270</td>
<td>30</td>
<td>400</td>
<td>2</td>
</tr>
<tr>
<td>PEDOT/Ni-Si MCP(^c,1)</td>
<td>20-1400</td>
<td>10</td>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>PANI-ABSA/GCE(^d,2)</td>
<td>35-175</td>
<td>7.5</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>PANI-GO/GCE(^e,2)</td>
<td>25-200</td>
<td>20</td>
<td>514</td>
<td>5</td>
</tr>
<tr>
<td>TMP/FCs/GCE(^f,1)</td>
<td>110-5000</td>
<td>44</td>
<td>350</td>
<td>6</td>
</tr>
<tr>
<td>Pt/MWCNT/GCE</td>
<td>24.5-765</td>
<td>20</td>
<td>160</td>
<td>7</td>
</tr>
<tr>
<td>MWCNT/PNB-3/GCE(^h,2)</td>
<td>50-1000</td>
<td>10.8</td>
<td>0.0</td>
<td>8</td>
</tr>
<tr>
<td>CoTNPPc-MWNTs/GCE(^f,2)</td>
<td>10-1600</td>
<td>5</td>
<td>215</td>
<td>9</td>
</tr>
<tr>
<td>[Ni(phen)](^3+)/MWCNT/GCE(^g,2)</td>
<td>10-630</td>
<td>4</td>
<td>310</td>
<td>10</td>
</tr>
<tr>
<td>aMWCNT/PeCo/GCE(^1)</td>
<td>10-1200</td>
<td>4.0</td>
<td>50.0</td>
<td>this work</td>
</tr>
</tbody>
</table>

Remark: a) gold decorated SiO\(_2@\)polyaniline core–shell modified carbon paste electrode; b) polyaniline modified screen-printed carbon electrode; c) Poly(3,4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode; d) polyaniline nano-networks/p-aminobenzene sulfonic acid modified GCE; e) polyaniline-graphene oxide fibrous nanocomposites; f) trimethylpropylammonium groups/sublimed ferrocene modified GCE; h) multi-walled carbon nanotubes/poly (Nile blue A) modified GCE; f) cobalt(II) tetra-neopentyloxy
phthalocyanine/MWCNT; g) nickel (II)-bis(1,10-phenanthroline) modified MWCNT; 1) pH = 7.0; 2) acid condition.

References