Silk Nanofiber Hydrogels with Tunable Modulus to Regulate Nerve Stem Cell Fate

ShuMeng Baia, WenMin Zhangb,\#, Qiang Lua,c,*, QuanHong Mab,*, David L. Kaplana,d, HeSun Zhue

aNational Engineering Laboratory for Modern Silk \& Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China

bJiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, the Second Affiliated Hospital, Soochow University, Suzhou 215123, People’s Republic of China

cJiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006, People’s Republic of China

dDepartment of Biomedical Engineering, Tufts University, Medford, MA 02155, USA

eResearch Center of Materials Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China

Corresponding author:
*Qiang Lu, Tel: (+86)-512-67061649; E-mail: Lvqiang78@suda.edu.cn

Co-Corresponding author:
*QuanHong Ma, Tel: (+86)-512-65880829; E-mail: h999.judy@gmail.com

\# The author contributed equally with the first author.
Fig. S1 SEM images of silk nanofiber films from hydrogels with different treatments. (a) silk nanofiber hydrogel, SN-H; (b) water-annealed silk nanofiber hydrogel, WA-SN-H; (c) 50% methanol-annealed silk nanofiber hydrogel, MA50-SN-H; (d) 80% methanol-annealed silk nanofiber hydrogel, MA80-SN-H.
Fig. S2 Neurospheres cultured for 24 h under differentiation conditions were stained for SOX2 and DAPI (A). Scale bars: 50 μm. Images with higher magnification shown in (B). Scale bars: 25 μm.
Fig. S3 The high magnification images of the proliferation and apoptosis of NSCs on silk nanofiber hydrogels (SN-H) with different mechanical properties. NSCs on silk nanofiber hydrogels with different mechanical properties were incorporated BrdU for 4 h and stained for BrdU and DAPI (A). NSCs on silk nanofiber hydrogels with different mechanical properties stained for active Caspase3 and DAPI (B).
Fig. S4 The high magnification images of the differentiation of NSCs on silk nanofiber hydrogels (SN-H) with different mechanical properties. NSCs seeded on silk nanofiber hydrogels with different mechanical properties were cultured for 3–5 days in vitro. The cells were stained for TUJ1 (A) or GFAP (B) and DAPI.