Supporting information for

Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging

Pratap C. Naha1, Ajlan Al Zaki2, Elizabeth Hecht1, Michael Chorny3, Peter Chhour1,2, Eric Blankemeyer4, Douglas M. Yates5, Walter R. T. Witschey1,2,6, Harold I. Litt1,6, Andrew Tsourkas2, David P. Cormode1,2,6*

1Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA. Tel: 215-615-4656, Fax: 240-368-8096, david.cormode@uphs.upenn.edu

2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.

3Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA.

4Small Animal Imaging Facility, University of Pennsylvania, PA, USA

5Nanoscale Characterization Facility, University of Pennsylvania, PA, USA

6Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
Figure S1. Transmission electron micrographs of BION. A) Bi-0 formulation synthesized without ethylene glycol. B) Bi-70, C) Bi-90.
Figure S2. Saturation of magnetization for different BION formulations.
Figure S3. The attenuation of BION as a function of bismuth content and X-ray tube voltage (80-140 kV).
Figure S4

Figure S4. Whole animal CT images of mice pre and post-injection with BION (Bi-30 formulation). Arrow indicates the bladder.
Figure S5

Figure S5. Hydrodynamic diameter of Bi-30 after incubation with 10% FBS at 37 °C for 0, 1 and 24 hours.

Table S1

<table>
<thead>
<tr>
<th>Ring</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₃O₄</td>
<td>4.89</td>
<td>2.97</td>
<td>2.55</td>
<td>2.1</td>
<td>1.74</td>
<td>1.63</td>
<td>1.5</td>
<td>1.32</td>
<td>1.28</td>
<td>1.2</td>
</tr>
<tr>
<td>Bi-0</td>
<td>na</td>
<td>3.00</td>
<td>2.57</td>
<td>2.15</td>
<td>na</td>
<td>1.62</td>
<td>1.51</td>
<td>1.31</td>
<td>1.24</td>
<td>1.20</td>
</tr>
<tr>
<td>Bi-30</td>
<td></td>
<td>2.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-70</td>
<td>na</td>
<td>2.93</td>
<td>2.49</td>
<td>2.11</td>
<td>1.71</td>
<td>1.60</td>
<td>1.47</td>
<td>na</td>
<td>1.29</td>
<td>na</td>
</tr>
</tbody>
</table>

Table S1. Diffraction d-spacings calculated from SAED data for the samples and from the PDF database for Fe₃O₄.