Electronic Supplementary Information

The Aligned Core-Sheath Nanofibers with Electrical Conductivity

for Neural Tissue Engineering†

Jianguang Zhanga, Kexin Qiua,b, Binbin Suna, Jun Fanga,b, Kuilihua Zhangc, Hany A. EI-Hamsharyd, Salem S. Al-Deyabd, Xiumei Moa,b,*

aCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People’s Republic of China
bState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People’s Republic of China
cDepartment of Polymer Materials, College of Materials and Textile Engineering, Jiaxing University, Zhejiang, 314001, People’s Republic of China
dDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia

† Corresponding author at: College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China. E-mail address: xmm@dhu.edu.cn (X. M. Mo)
Fig.S1 Schematic diagram of coaxial electrospinning nanofiber processing for core-shell aligned PS/PANI nanofibrous mesh and the color of the mesh without and with PANI.
Fig.S2 The average diameter of PS/PAni nanofibers (*= significantly different in comparison with PS-PAni-0, $P < 0.05$, $n=100$).