Supporting Information for

Acid-Triggered Drug Release from Micelles Based on Amphiphilic Oligo(ethylene glycol)-Doxorubicin Alternative Copolymer†

Ying Wang,‡a Qiaojie Luo,‡b Rui Sun,a Guangyu Zha,b Xiaodong Li,b Zhiquan Shena and Weipu Zhu* a

a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

b Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China

* Correspondence to: W. P. Zhu (E-mail: zhuwp@zju.edu.cn)
† Electronic Supplementary Information (ESI) available. See DOI: 10.1039/b000000x/
‡ These two authors contributed equally to this work.
Characterization of POEG$_{22}$M, POEGM$_{22}$-CHO and POEGM$_{22}$-DOX

POEG$_{22}$M, POEGM$_{22}$-CHO and POEGM$_{22}$-DOX were all characterized by 1H NMR spectroscopy, as shown in Fig. S1 with all the relevant signals well labelled.

Fig. S1 1H NMR spectra of POEG$_{22}$M (A), POEGM$_{22}$-CHO (B) in CDCl$_3$, and POEGM$_{22}$-DOX (C) in DMSO-d$_6$.

Determination of the Calibration Curves of DOX in Phosphate Buffer (PBS, pH 7.4, 5.8, 5.0)

Calibration curves of DOX in PBS (0.01M, pH = 7.4, 5.8) and acetate buffer solution (0.01 M, pH = 5.0) were determined by measuring the absorption of DOX with known concentrations via Shimadzu UV2550 UV-vis spectrophotometer at a wavelength of 479 nm, which is the
typical absorption for DOX. The absorption as a function of DOX concentration was recorded to generate the calibration curve, which is shown in Fig. S2.

Fig. S2 Calibration curves of DOX in PBS (0.01 M, pH = 7.4) (A), PBS (0.01 M, pH = 5.8) (B) and acetate buffer solution (0.01 M, pH = 5.0).