Amino- and ionic liquid-functionalised nanocrystalline ZnO via silane anchoring - an antimicrobial synergy

Marjeta Čepin, Vasko Jovanovski*, Matejka Podlogar and Zorica Crnjak Orel*

*aNational Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
bJožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia

Supporting information
Figure 1SI: Growth curves of E. coli with the increasing concentrations of pure and modified ZnO nanocrystals. Red line: fitted (non-linear regression) Sigmoidal (Boltzmann) growth curves.
Figure 2SI: Growth curves of S. aureus with the increasing concentrations of pure and modified ZnO nanocrystals. Red line: fitted (non-linear regression) Sigmoidal (Boltzmann) growth curves.
Figure 3SI: Growth curves of E. coli with the increasing concentrations of Zn²⁺ and investigated silanes. Red line: fitted (non-linear regression) Sigmoidal (Boltzmann) growth curves.
Figure 4SI: Reusability study by adding fresh inoculums of E. coli every 12 h for 5 days

Figure 5SI: SEM images of healthy (a, b) and A3-treated E. coli (c, d).
Figure 6SI: Confocal micrographs of untreated and treated E. coli. Treatment was performed using 0.125 g L⁻¹ of ZnO-based materials. Two fluorescent stains SYTO® 9 (green) and propidium iodide (red) were used. Green fluorescence is characteristic for live and dead bacteria, whereas red fluorescence is due to dead bacteria.