A supramolecular two-photon-active hydrogel platform for direct bioconjugation under near-infrared radiation

Antonio Pacielloab and M. Gabriella Santonicola*cd

a Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy

b Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy

c Department of Chemical Materials and Environmental Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy

d Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands

*E-mail: mariagabriella.santonicola@uniroma1.it

Experimental

\textbf{NMR data analysis: calculation of PEI methacrylation}

The extent of methacrylation of branched PEI was determined by the analysis of 1H NMR spectra using the following formulas (Forrest \textit{et al.}, \textit{Pharm. Res.}, 2004):

\[
\text{methacrylated secondary amines (\%)} = \left(\frac{E_{bb}}{4} \cdot \frac{3}{M'} \cdot N' \right)^{-1} \cdot 100\%
\]

\[
\text{methacrylated tertiary amines (\%)} = \left(\frac{E_{bb}}{4} \cdot \frac{3}{M''} \cdot N'' \right)^{-1} \cdot 100\%
\]

where M' is the integration of δ 1.70-1.75 peaks corresponding to methacrylated secondary amines [-NH–COC(CH$_2$)CH$_3$], M'' is the integration of δ 2.0-2.1 peaks corresponding to methacrylated tertiary amines [\textgreater N–COC(CH$_2$)CH$_3$], and E_{bb} is the integration of δ 2.5-3.0 peaks corresponding to ethylene backbone.

N' and N'' are the mole fractions of PEI primary and secondary amines, 0.31 and 0.39 respectively, based on the analysis of the commercial PEI starting material by 13C NMR (von Harpe \textit{et al.}, \textit{J. Controlled Release}, 2000).
Fig. S1 Small angle X-ray scattering (SAXS) profile in log-log plot of swollen PEIMA hydrogel obtained at room temperature, showing a steep intensity decay at lower q values (slope -3.5) and a broad peak at 0.7 nm\(^{-1}\).

Fig. S2 Microscopy images showing control experiments for photopatterning of PEIMA supramolecular hydrogel. White light transmission images of PEIMA hydrogel in a solution without functional probes. No imprinting is visible before and after multiphoton laser irradiation at wavelengths of 680 nm (top) and 1000 nm (bottom). Scale bars are 100 µm.