Electronic Supplementary information for

Synthesis, characterization and evaluation of collagen scaffold crosslinked with functionalized silver nanoparticles for clinical wound healing applications: in vitro and in vivo studies

Abhishek Mandal, a,b Santhanam Sekar, b N. Chandrasekaran, a Amitava Mukherjee, a* Thotapalli P. Sastry b*

aCentre for Nano-Biotechnology, VIT University, Vellore 632014, India.
bBio-Products Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India.

*a E-mail address: amitav@vit.ac.in
Tel #: +91-416-220-2620

*b E-mail address: sastrytp@hotmail.com
Fax #: +91-44-24911589; Tel #: +91-44-24420709
Figure S1 Schematic representation of the synthesis, functionalization and crosslinking of silver nanoparticles with succinylated collagen.
Figure S2 SDS-PAGE of succinylated collagen (SC) solution.

![SDS-PAGE Image]

- 200 kDa
- 116 kDa
- 97.4 kDa

Figure S3 Fluorescence spectra of a) bare and b) aminosilane functionalized silver nanoparticles.
Figure S4 Particle size distribution of a) silver nanoparticles (AgNPs) and b) functionalized silver nanoparticles (FAgNPs), respectively.

![Particle size distribution graph](image)

Figure S5 Percentage of amine content of the scaffolds produced in this study, in relation to non-cross-linked collagen scaffolds. Values are presented as mean ± SD (n = 3) (*p < 0.01)

![Percentage of amine content graph](image)
Figure S6 X-ray photoelectron spectroscopy (XPS) spectra of FSCSC scaffold.

Figure S6: X-ray photoelectron spectroscopy (XPS) spectra of FSCSC scaffold.