Supporting Information for

Synthesis of Free- standing Sub-10nm Y$_2$O$_3$:Eu Particles on Silica Nanowire Matrix and Amplified Luminescent Performance

Xin- Ling Liu, Pei- Xin Zhu, Yan- Feng Gao, and Ren- Hua Jin

1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China

2 Synthetic Chemistry Lab., Kawamura Institute of Chemical Research, 631 Sakado, Sakura, 285-0078 Japan

3 Department of Materials and Life Chemistry, Faculty of Engineering, Kanagawa University, and JST-CREST, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686 Japan

Correspondence and requests for materials should be addressed to R.H.J.

rhjin@kanagawa-u.ac.jp

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C
This journal is © The Royal Society of Chemistry 2012
Figure S1. TEM images (left) and corresponding magnified TEM images (right) of Y_2O_3:Eu synthesized without PEI@SiO$_2$ as matrix
Figure S2. TEM images (left) and corresponding magnified TEM images (right) of Y$_2$O$_3$:Tb@SNW (the synthesis conditions were similar to that of Y$_2$O$_3$:Eu@SNW by replacing Eu(OAc)$_3$ with Tb(OAc)$_3$)
Figure S3. Emission spectra of (excited by 270nm) Y_2O_3:Tb@SNW (black line) and BA/ Y_2O_3:Tb@SNW (green line).

Figure S4. Snapshot images of the lined powders of BA/Y_2O_3:Eu@SNW (left) and BA/Y_2O_3:Tb@SNW (right) irradiated by UV light (254nm).