Supporting Information

Bulky Pyridinylfluorene-functionalizing Approach to Diarylfluorenes-based Bipolar Host Materials for Efficient Red, Green, Blue and White Electrophosphorescent Devices

Xiang-Hua Zhao, a Zhen-Song Zhang, a Yan Qian, a Ming-Dong Yi, a Ling-Hai Xie, *, a Chao-Peng Hu, a Guo-Hua Xie, c Hui Xu, d Chun-Miao Han, d Yi Zhao, c* Wei Huang *, a,b

a Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road, Nanjing 210046, China. Fax: (+86) 25 8349 2333; Tel: Tel: (+86) 25 8349 2333; E-mail: iamlhxie@njupt.edu.cn; weihuang@njupt.edu.cn,

b Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816, China. Fax: +86 25 5813 9988; Tel: +86 25 5813 9001.

c State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering Jilin University, 2699 Qianjin Street, Changchun 130012, China. E-mail: zhao_yi@jlu.edu.cn

d Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
Fig. S1. TGA (a) and DSC (b-d) curves of the hosts in nitrogen atmosphere.
Fig. S2. Cyclic voltammogram of the three hosts measured with a scan rate of 100 mV s⁻¹ in acetonitrile solutions (a: Oxide curves; b: Reductant curves).
Fig. S3. Top): The energy level alignment diagram of the PhOLEDs (B-3, G1-3 and R1-3), Bottom): The structure for PhOLEDs and molecular structures of the used compounds used in these devices. Bphen (4,7-Diphenyl-1,10-diazaphenanthrene); 3TPyMB (Tris(2,4,6-trimethyl-3-(pyridine-3-yl)phenyl)borane); CzPy-PyFM; CzPy-DPyFM; T$_3$DPyFM; m-MTDATA (4,4',4''-Tris(N-3-methyl-phenyl-N-pjenylamino)
triphenyl-amine); \(\text{Ir(ppy)}_3 \) (Tris(2-phenyl-pyridine)iridium(III)); \(\text{Ir(MDQ)}_2(\text{acac}) \) (Bis(2-methyl-dibenzo[f, h]guinoxaline) (acetyl-acetonate)); FIrpic (Bis(4,6-difluoro-phenyl-pyridine) (picolinate)iridium(III)); ITO (indium tin oxide).

Fig. S4. Phosphorescence spectra of the three hosts measured at 77 K in CH\(_2\)Cl\(_2\).
Fig. S5. The EL spectra of the blue, green, red and white devices at different driving voltages.
Fig. S6. Current efficiency (solid)–luminance–power efficiency (hollow) characteristics of the blue (a), green (b), red (c) and white (d) devices, respectively.
Fig. S7. (a-d) The EL spectra of the blue, green, red and white devices at different driving voltages, (e) current efficiency–luminance, (f) power efficiency–luminance and (g) EQE vs current density curves of the optimized devices based on R2 utilizing CzPy-DPyFM host.

Fig. S8. The MALDI-TOF-MS spectrum of T$_3$PyFM
Fig. S9. 1H NMR spectrum of T₃PyFM in CDCl₃

Fig. S10. 13C NMR spectrum of T₃PyFM in CDCl₃
Fig. S11. The MALDI-TOF-MS spectrum of CzPy-PyFM

Fig. S12. 1H NMR spectrum of CzPy-PyFM in CDCl$_3$
Fig. S13. 13C NMR spectrum of CzPy-PyFM in CDCl$_3$

Fig. S14. The MALDI-TOF-MS spectrum of CzPy-DPyFM
Fig. S15. 1H NMR spectrum of CzPy-DPyFM in CDCl$_3$

Fig. S16. 13C NMR spectrum of CzPy-DPyFM in CDCl$_3$