Supporting Information

DFT/TDDFT Investigation on the Electronic Structures and Photophysical Properties of Phosphorescent Ir(III) Complexes with Conjugated/Non-conjugated Carbene Ligands

Yuqi Liu,^a Xiaobo Sun,^b Godefroid Gahungu,^c Xiaochun Qu,^a Ying Wang,^{*,a} and Zhijian Wu^{*,a}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China

^b Department of Applied Chemistry, Qingdao Agricultural University, Qingdao 266109, P. R. China

^c Universit é du Burundi, Facult é des Sciences, D épartement de Chimie, Unit é de Chimie Théorique et Mod disation Mol éculaire, BP. 2700 Bujumbura, Burundi.

*Corresponding authors. Email: <u>ywang_2012@ciac.jl.cn</u>(YW), <u>zjwu@ciac.jl.cn</u> (ZJW);*Tel:* +86-431-85682801

Benchmark calculations for different density functionals

In order to find a method that would allow for reliable prediction of structure parameters, the ground-state geometries of **2b**, **3a** and **3b** were fully optimized at PBE0, B3LYP¹⁷ and CAM-B3LYP¹⁸ levels with the same basis set based on their single-crystal X-ray structures,¹⁰ respectively. The partial key parameters of geometrical structures are tabulated in Table S1, along with the experimental values.

Generally, the calculated bond distances are elongated as compared with the corresponding X-ray data. This can be attributed to the crystal packing effect which is not taken into account in our calculation. Compared with the crystal data of 2b, 3a and 3b, the Ir-N/Ir-C bond lengths calculated at B3LYP level are drastically overestimated, especially the Ir-N1 and Ir-N2 bond lengths deviating from the experimental values by ~0.110 and 0.070 Å, respectively. Therefore, the B3LYP functional is not reliable in predicting the structures of the herein studied Ir(III) complexes. The CAM-B3LYP functional gives better Ir-C bond lengths (deviation within 0.035 Å) than the B3LYP functional, however, the Ir-N1 and Ir-N2 bond lengths are still overestimated by ~0.070 and 0.050 Å respectively. However, the PBE0 functional performs much better than B3LYP and CAM-B3LYP in predicting the metal-related bond lengths. The Ir-C bond lengths calculated at PBE0 level are in quite good agreement with the experimental data (within 0.020 Å), and about 0.060 and 0.030 Å of deviation from the experimental values are revealed for the two Ir-N bond lenghts, respectively. Besides, the three functionals give an excellent accuracy in predicting the metal-related bond angles. Overall, the hybrid PBE0 functional predict more satisfactory bond length and bond angles (gives more satisfactory geometry parameters) for these Ir(III) complexes compared with B3LYP and CAM-B3LYP functionals. Therefore, we will discuss in detail the geometrical structures of the studied complexes obtained at PBE0 level.

Table S	1 Selected	optimized	bond	length	(in	Å) and	bond	angles	(in	9	of	2b,	3a	and	3b	in
ground-s	tate at PBE	0, B3LYP a	nd CA	M-B3L	YP le	evels, re	spectiv	vely, alo	ng w	ith	the	exp	erin	nenta	l da	ta

			2b				3a				3b	
	PBE0	B3LYP	CAM-B3LYP	Exptl. ^a	PBE0	B3LYP	CAM-B3LYP	Exptl. ^a	PBE0	B3LYP	CAM-B3LYP	Exptl. ^a
Ir-C1	2.044	2.068	2.059	2.057	2.026	2.048	2.039	2.030	2.042	2.066	2.057	2.037
Ir-C2	2.038	2.059	2.051	2.041	2.027	2.045	2.038	2.027	2.038	2.059	2.051	2.024
Ir-C3	2.061	2.086	2.076	2.041	2.034	2.056	2.049	2.023	2.059	2.084	2.074	2.057
Ir-C4	2.037	2.056	2.046	2.042	2.021	2.038	2.030	2.023	2.040	2.060	2.050	2.025
Ir-N1	2.247	2.308	2.270	2.212	2.202	2.252	2.222	2.154	2.241	2.300	2.265	2.174
Ir-N2	2.165	2.200	2.178	2.129	2.128	2.162	2.142	2.103	2.175	2.213	2.187	2.137
C1-Ir-C2	87.8	87.9	87.8	87.2	78.9	78.8	78.9	79.2	87.6	87.8	87.6	86.9
C3-Ir-C4	86.9	87.0	86.9	86.3	78.8	78.7	78.8	78.6	86.6	86.7	86.6	86.3
N1-Ir-N2	75.0	74.1	74.7	75.5	75.7	75.0	75.4	76.3	74.9	73.9	74.6	75.8
C1-Ir-C3	175.1	175.7	175.4	174.4	169.7	170.2	169.8	168.7	174.7	175.2	175.0	173.8
C2-Ir-N2	171.2	170.7	171.2	171.1	169.5	169.1	169.5	170.8	170.9	170.3	170.8	170.3
C4-Ir-N1	175.8	175.0	175.4	174.7	173.6	173.1	173.5	175.1	176.0	175.3	175.6	177.5
C1-Ir-N1-N2	91.2	91.3	91.3	92.7	98.9	98.9	98.8	97.3	90.9	91.1	91.0	91.0
C4-Ir-C1-C2	-88.0	-88.4	-88.2	-89.5	-91.8	-91.9	-91.7	-88.0	-88.0	-88.3	-88.2	-87.7
N2-Ir-C3-C4	101.0	101.1	100.8	99.6	-87.5	98.5	-87.3	-90.7	-87.2	101.6	-87.0	-86.7

	MO^a	Ε		MO comp	$osition(\%)^b$		Assign			
			F-ph	NHC	-CH ₃					
fpmb	L	-0.31	98	2	0		$\pi^*(\text{F-ph})$			
	Н	-3.43	9	89	2		$\pi(\text{NHC})$			
			2F-ph	NHC	-CH ₃					
dfpmb	L	-0.18	90	10	0		$\pi^*(2F-ph)$			
	Н	-3.29	8	89	2		$\pi(\text{NHC})$			
			F-ph	NHC	-CH ₃	-CH ₂				
fbmb	L	-0.19	98	1	0	1	$\pi^*(\text{F-ph})$			
	Н	-3.40	2	95	2	1	$\pi(\text{NHC})$			
			2F-ph	NHC	-CH ₃	$-CH_2$				
dfbmb	L	-0.12	98	1	0	2	π*(2F-ph)			
	Н	-3.22	2	95	2	1	$\pi(\text{NHC})$			
			N3	ру	-CF ₃					
fptz	L	-1.67	31	69	0		π *(N3+py)			
	Н	-7.32	49	50	1		π(N3+py)			
			N3	ру	-tBu	-CF ₃				
bptz	L	-1.48	33	66	2	0	π*(N3+py)			
	Н	-7.18	47	52	0	0	π(N3+py)			
^{<i>a</i>} H = HOMO; L= LUMO; ^{<i>b</i>} F-ph = 4-fluorophenyl; 2F-ph = 2,4-fluorophenyl; NHC =										
benzimidaz	olyl; N3 =	triazolyl;	py = pyridy	l; -tBu = ter	rt-butyl.					

Table S2 Frontier molecular orbital energies (eV) and compositions (%) of different fragments in the ground state for the related ligands

-	0		6		1		
\mathbf{MO}^{a}	Enorm		МО	composition	n(%)		- Assign
MO	Ellergy	Ir	fpmb1	fpmb2	fptz	$-CF_3$	Assign
L+6	0.07	7	79	11	3	0	$\pi^*(\text{fpmb})$
L+4	-0.26	1	95	2	1	0	$\pi^*(\text{fpmb1})$
L+3	-0.75	5	1	93	1	0	$\pi^*(\text{fpmb2})$
L+2	-0.87	7	91	1	1	0	$\pi^*(\text{fpmb1})$
L+1	-1.04	1	1	1	97	0	$\pi^*(\text{fptz})$
L	-1.57	3	1	1	96	0	$\pi^*(\text{fptz})$
Н	-5.52	27	17	54	2	0	$d(Ir)+\pi(fpmb)$
H-1	-5.91	11	50	36	3	0	$d(Ir)+\pi(fpmb)$
H-2	-6.23	29	11	22	37	1	$d(Ir)+\pi(fpmb+fptz)$
H-3	-6.30	16	33	44	6	0	$d(Ir)+\pi(fpmb)$
H-4	-6.57	34	49	8	10	0	$d(Ir)+\pi(fpmb1)$
H-5	-6.74	8	3	42	46	1	π (fpmb2+fptz)
a H = H	OMO; L= LU	JMO.					

Table S3 Frontier molecular orbital energies (eV) and compositions (%) ofdifferent fragments in the ground state for complex 1a

Table S4 Frontier molecular orbital energies (eV) and compositions (%) ofdifferent fragments in the ground state for complex 1b

MO ^a	F	_	МО	composition	n(%)		
MO	Energy	Ir	fbmb1	fbmb2	fptz	-CF ₃	Assign
L+5	0.23	1	24	75	0	0	$\pi^*(\text{fbmb})$
L+4	0.13	7	85	6	1	0	$\pi^*(\text{fbmb1})$
L+3	-0.47	4	51	45	0	0	$\pi^*(\text{fbmb})$
L+2	-0.89	5	43	50	2	0	$\pi^*(\text{fbmb})$
L+1	-1.00	0	2	1	96	0	$\pi^*(\text{fptz})$
L	-1.56	2	1	1	96	0	$\pi^*(\text{fptz})$
Η	-5.66	36	14	48	3	0	$d(Ir)+\pi(fbmb)$
H-1	-5.88	36	36	19	9	0	$d(Ir)+\pi(fbmb)$
H-2	-6.27	4	14	81	1	0	π (fbmb)
H-3	-6.34	12	41	34	13	0	$d(Ir)+\pi(fbmb+fptz)$
H-4	-6.40	35	17	13	35	1	$d(Ir)+\pi(fbmb+fptz)$
H-5	-6.69	8	67	19	6	0	π (fbmb)
a H = H0	OMO; L= LU	JMO.					

\mathbf{MO}^{a}	Г		MO comp	osition(%)		-	
MO	Energy	Ir	dfpmb1	dfpmb2	fptz	-CF ₃	Assign
L+5	-0.12	1	2	97	0	0	$\pi^*(dfpmb2)$
L+4	-0.31	1	96	2	1	0	$\pi^*(dfpmb1)$
L+3	-0.74	6	3	90	1	0	$\pi^*(dfpmb2)$
L+2	-0.89	8	87	2	2	0	$\pi^*(dfpmb1)$
L+1	-1.13	1	1	1	97	0	$\pi^*(\text{fptz})$
L	-1.67	3	1	1	96	0	$\pi^*(\text{fptz})$
Н	-5.76	28	16	53	2	0	$d(Ir)+\pi(dfpmb)$
H-1	-6.08	15	38	44	4	0	$d(Ir)+\pi(dfpmb)$
H-2	-6.35	14	25	42	19	1	$d(Ir)+\pi(dfpmb+fptz)$
H-3	-6.36	21	31	22	24	1	$d(Ir)+\pi(dfpmb+fptz)$
H-4	-6.67	27	59	5	9	0	$d(Ir)+\pi(dfpmb1)$
H-5	-6.80	6	5	49	39	1	$\pi(dfpmb2+fptz)$
a H = H	OMO; L= L	UMO.					

Table S5 Frontier molecular orbital energies (eV) and compositions (%) ofdifferent fragments in the ground state for complex 2a

Table S6 Frontier molecular orbital energies (eV) and compositions (%) ofdifferent fragments in the ground state for complex 2b

	Г		MO c	omposition	(%)		A :
MO	Energy	Ir	dfbmb1	dfbmb2	fptz	-CF ₃	Assign
L+5	0.15	2	90	7	0	0	$\pi^*(dfbmb1)$
L+4	0.08	10	73	14	3	0	$\pi^*(dfbmb)$
L+3	-0.55	4	46	50	0	0	$\pi^*(dfbmb)$
L+2	-0.97	5	48	45	2	0	$\pi^*(dfbmb)$
L+1	-1.1	0	2	1	96	0	$\pi^*(\text{fptz})$
L	-1.67	2	1	1	96	0	$\pi^*(\text{fptz})$
Н	-5.88	38	14	45	3	0	$d(Ir)+\pi(dfbmb)$
H-1	-6.05	37	30	21	11	0	$d(Ir)+\pi(dfbmb)$
H-2	-6.27	2	10	88	1	0	$\pi(dfbmb)$
H-3	-6.52	33	13	4	49	1	$d(Ir)+\pi(fptz)$
H-4	-6.56	6	53	39	1	0	$\pi(dfbmb)$
H-5	-6.67	1	85	13	1	0	$\pi(dfbmb)$
H-9	-7.19	29	25	23	23	0	$d(Ir)+\pi(dfbmb+fptz)$
a H = H0	OMO; L= LU	JMO.					

	Б	_	MO	compositio	n(%)		- A ·
мо	Energy	Ir	fpmb1	fpmb2	bptz	CF3	Assign
L+6	0.12	7	80	10	3	0	$\pi^*(\text{fpmb})$
L+4	-0.22	1	95	2	1	0	$\pi^*(\text{fpmb1})$
L+3	-0.70	5	1	92	1	0	$\pi^*(\text{fpmb2})$
L+2	-0.83	7	91	1	1	0	$\pi^*(\text{fpmb1})$
L+1	-0.87	1	2	1	96	0	$\pi^*(bptz)$
L	-1.45	2	1	1	96	0	$\pi^*(bptz)$
Н	-5.47	27	17	54	2	0	$d(Ir)+\pi(fpmb)$
H-1	-5.86	12	48	36	3	0	$d(Ir)+\pi(fpmb)$
H-2	-6.16	27	10	21	40	1	$d(Ir)+\pi(fpmb+bptz)$
H-3	-6.25	16	34	44	5	0	$d(Ir)+\pi(fpmb)$
H-4	-6.51	33	46	8	13	0	$d(Ir)+\pi(fpmb1)$
H-5	-6.68	10	5	40	44	1	π (fpmb2+bptz)
a H = H0	OMO; L= LU	MO.					

Table S7 Frontier molecular orbital energies (eV) and compositions (%) ofdifferent fragments in the ground state for complex 3a

Table S8 Frontier molecular orbital energies (eV) and compositions (%) ofdifferent fragments in the ground state for complex 3b

	Г		МО	compositio	n(%)		A .
MO	Energy	Ir	fbmb1	fbmb2	bptz	CF3	Assign
L+5	0.30	2	42	55	1	0	$\pi^*(\text{fbmb})$
L+4	0.18	3	81	15	1	0	$\pi^*(\text{fbmb})$
L+3	-0.44	4	47	50	0	0	$\pi^*(\text{fbmb})$
L+2	-0.86	5	47	45	3	0	$\pi^*(\text{fbmb})$
L+1	-0.93	0	3	2	95	0	$\pi^*(bptz)$
L	-1.41	2	1	1	95	0	$\pi^*(bptz)$
Н	-5.60	35	15	48	2	0	$d(Ir)+\pi(fbmb)$
H-1	-5.84	37	33	20	10	0	$d(Ir)+\pi(fbmb)$
H-2	-6.22	6	7	82	4	0	π (fbmb2)
H-3	-6.32	30	12	17	40	1	$d(Ir)+\pi(fbmb+bptz)$
H-4	-6.37	11	47	37	5	0	$d(Ir)+\pi(fbmb)$
H-6	-6.66	19	14	37	29	0	$d(Ir)+\pi(fbmb+bptz)$
a H = HO	OMO; L= LU	MO.					

\mathbf{MO}^{a}	г		MO com	nposition(%))		
MO	Energy	Ir	dfpmb1	dfpmb2	bptz	CF3	Assign
L+5	-0.08	1	2	97	0	0	$\pi^*(dfpmb2)$
L+4	-0.27	1	95	2	1	0	$\pi^*(dfpmb1)$
L+3	-0.70	6	3	90	1	0	$\pi^*(dfpmb2)$
L+2	-0.85	8	87	3	2	0	$\pi^*(dfpmb1)$
L+1	-1.04	1	1	1	97	0	$\pi^*(bptz)$
L	-1.49	2	1	1	96	0	$\pi^*(bptz)$
Η	-5.71	28	17	53	2	0	$d(Ir)+\pi(dfpmb)$
H-1	-6.02	16	37	43	4	0	$d(Ir)+\pi(dfpmb)$
H-2	-6.28	19	5	36	39	1	$d(Ir)+\pi(dfpmb2+bptz)$
H-3	-6.31	16	51	27	6	0	$d(Ir)+\pi(dfpmb)$
H-4	-6.62	28	57	5	10	0	$d(Ir)+\pi(dfpmb1)$
H-5	-6.73	8	5	48	38	1	π (dfpmb2+bptz)
a H = H	OMO; L= L	UMO.					

Table S9 Frontier molecular orbital energies (eV) and compositions (%) ofdifferent fragments in the ground state for complex 4a

Table S10 Frontier molecular orbital energies (eV) and compositions (%) of different fragments in the ground state for complex **4b**

			MO	compositior	n(%)		- Assign $\pi^*(dfbmb1)$ $\pi^*(dfbmb)$ $\pi^*(dfbmb)$ $\pi^*(dfbmb)$ $\pi^*(dptz)$ $\pi^*(bptz)$ $d(Ir)+\pi(dfbmb)$ $d(Ir)+\pi(dfbmb)$ $\pi(dfbmb)$ $d(Ir)+\pi(bptz)$ $d(Ir)+\pi(dfbmb+bptz)$
MO"	Energy	Ir	dfbmb1	dfbmb2	bptz	CF3	- Assign
L+5	0.19	2	91	7	0	0	$\pi^*(dfbmb1)$
L+4	0.14	9	73	15	3	0	$\pi^*(dfbmb)$
L+3	-0.51	4	46	50	0	0	$\pi^*(dfbmb)$
L+2	-0.93	5	48	45	2	0	$\pi^*(dfbmb)$
L+1	-1.01	0	2	1	96	0	$\pi^*(bptz)$
L	-1.49	2	1	1	95	0	$\pi^*(bptz)$
Н	-5.83	38	14	45	3	0	$d(Ir)+\pi(dfbmb)$
H-1	-5.99	38	30	20	12	0	$d(Ir)+\pi(dfbmb)$
H-2	-6.23	2	10	88	1	0	$\pi(dfbmb)$
H-3	-6.44	32	13	4	51	1	$d(Ir)+\pi(bptz)$
H-6	-6.75	19	18	40	23	0	$d(Ir)+\pi(dfbmb+bptz)$
H-9	-7.12	26	29	25	20	0	$d(Ir)+\pi(dfbmb+bptz)$
a H = H0	DMO; L = LU	MO.					

	state	λ/Ε	f	Configuration ^{<i>a</i>}	Assignment	Exptl ^b
1 a	S_1	373/3.32	0.0004	H→L(96%)	$d(Ir)+\pi(fpmb)\rightarrow\pi^*(fptz)/MLCT/LLCT$	
	S_2	329/3.77	0.0533	H-1→L(84%)	$d(Ir)+\pi(fpmb)\rightarrow\pi^*(fptz)/MLCT/LLCT$	
	S_7	298/4.15	0.0573	H-3→L(79%)	$d(Ir)+\pi(fpmb)\rightarrow\pi^*(fptz)/MLCT/LLCT$	
	S_{11}	277/4.48	0.1463	H-1→L+3(80%)	$d(Ir)+\pi(fpmb)\rightarrow\pi^*(fpmb2)/MLCT/LLCT/IL$	
	S_{17}	262/4.73	0.1614	H→L+6(33%)	d(Ir)+ π (fpmb) $\rightarrow \pi^*$ (fpmb)/MLCT/LLCT/IL	
				H-2→L+3(16%)	d(Ir)+ π (fpmb+fptz) $\rightarrow \pi^*$ (fpmb2)/MLCT/LLCT/IL	
2a	\mathbf{S}_1	360/3.44	0.0007	H→L(96%)	$d(Ir)+\pi(dfpmb) \rightarrow \pi^*(fptz)/MLCT/LLCT$	
	S_2	325/3.82	0.0667	H-1→L(82%)	$d(Ir)+\pi(dfpmb) \rightarrow \pi^*(fptz)/MLCT/LLCT$	
	S_7	296/4.18	0.0311	H-3→L(45%)	d(Ir)+ π (dfpmb+fptz) $\rightarrow \pi^*$ (fptz)/MLCT/LLCT/IL	
	S ₉	282/4.40	0.0617	H-1→L+2(60%)	$d(Ir)+\pi(dfpmb)\rightarrow\pi^*(dfpmb1)/MLCT/LLCT/IL$	
	S ₁₂	272/4.56	0.1985	H-1→L+3(77%)	d(Ir)+ π (dfpmb) $\rightarrow \pi^*$ (dfpmb2)/MLCT/LLCT/IL	
	S_{24}	250/4.95	0.2435	H-3→L+3(37%)	d(Ir)+ π (dfpmb+fptz) $\rightarrow \pi^*$ (dfpmb2)/MLCT/LLCT/IL	
				$H\rightarrow L+5(27\%)$	d(Ir)+ π (dfpmb) $\rightarrow \pi^*$ (dfpmb2)/MLCT/LLCT/IL	
3a	\mathbf{S}_1	367/3.38	0.0004	H→L(97%)	$d(Ir)+\pi(fpmb)\rightarrow\pi^*(bptz)/MLCT/LLCT$	356
	S_2	325/3.81	0.0808	H-1→L(83%)	$d(Ir)+\pi(fpmb) \rightarrow \pi^*(bptz)/MLCT/LLCT$	318
	S_7	295/4.20	0.0804	H-3→L(75%)	$d(Ir)+\pi(fpmb) \rightarrow \pi^*(bptz)/MLCT/LLCT$	298
	\mathbf{S}_{10}	278/4.47	0.0826	H-1→L+3(55%)	$d(Ir)+\pi(fpmb) \rightarrow \pi^*(fpmb2)/MLCT/LLCT/IL$	
				$H-1 \rightarrow L+1(21\%)$	$d(Ir)+\pi(fpmb) \rightarrow \pi^*(bptz)/MLCT/LLCT$	
	S_{12}	271/4.58	0.1207	H-5→L(65%)	$\pi(\text{fpmb2+bptz}) \rightarrow \pi^*(\text{bptz})/\text{LLCT/IL}$	
	S_{16}	262/4.70	0.1420	$H\rightarrow L+6(31\%)$	$d(Ir)+\pi(fpmb) \rightarrow \pi^*(fpmb)/MLCT/LLCT$	
				H-2→L+3(21%)	d(Ir)+ π (fpmb+bptz) $\rightarrow \pi^*$ (fpmb2)/MLCT/LLCT/IL	
	S_{23}	252/4.93	0.1617	H-4→L+2(45%)	$d(Ir)+\pi(fpmb1) \rightarrow \pi^*(fpmb1)/MLCT/IL$	
4a	\mathbf{S}_1	348/3.56	0.0007	H→L(96%)	$d(Ir)+\pi(dfpmb)\rightarrow\pi^*(bptz)/MLCT/LLCT$	
	S_2	316/3.92	0.0964	H-1→L(81%)	$d(Ir)+\pi(dfpmb) \rightarrow \pi^*(bptz)/MLCT/LLCT$	
	S_8	282/4.40	0.0790	H-1→L+2(61%)	d(Ir)+ π (dfpmb) $\rightarrow \pi^*$ (dfpmb1)/MLCT/LLCT/IL	
	S ₁₁	272/4.55	0.1593	H-1→L+3(76%)	$d(Ir)+\pi(dfpmb)\rightarrow\pi^*(dfpmb2)/MLCT/LLCT/IL$	
	S_{14}	262/4.73	0.0972	H-2→L+1(62%)	$d(Ir)+\pi(dfpmb2+bptz) \rightarrow \pi^{*}(bptz)/MLCT/LLCT/IL$	
	S ₂₂	251/4.94	0.2637	H-3→L+3(29%)	$d(Ir)+\pi(dfpmb)\rightarrow\pi^*(dfpmb2)/MLCT/LLCT/IL$	
				H-4→L+1(25%)	$d(Ir)+\pi(dfpmb1)\rightarrow\pi^*(bptz)/MLCT/LLCT$	
^a H =	= HOMO	; L= LUMO; l	' Experimen	tal data from Ref. [10]		

Table S11 Selected calculated wavelength (nm)/energies (eV), oscillator strength (f), major contribution and transition characters for **1a-4a** in CH₂Cl₂ media, along with the experimental data for **3a**

	state	λ/Ε	f	Configuration ^a	Assignment	Exptl ^b
1b	\mathbf{S}_1	361/3.43	0.0004	H→L(95%)	$d(Ir)+\pi(fbmb)\rightarrow\pi^*(fptz)/MLCT/LLCT$	
	S_2	343/3.62	0.0581	H-1→L(94%)	$d(Ir)+\pi(fbmb)\rightarrow\pi^*(fptz)/MLCT/LLCT$	
	S_6	293/4.23	0.4525	H-1→L+2(62%)	$d(Ir)+\pi(fbmb)\rightarrow\pi^*(fbmb)/MLCT/LLCT/IL$	
				H-1 \rightarrow L+1(32%)	d(Ir)+ π (fbmb) $\rightarrow \pi^*$ (fptz)/MLCT/LLCT	
	\mathbf{S}_{10}	278/4.46	0.0637	H-5→L(57%)	π (fbmb) $\rightarrow \pi^*$ (fptz)/LLCT	
	\mathbf{S}_{13}	267/4.64	0.0436	H-3→L+2(47%)	$d(Ir) + \pi(fbmb + fptz) \rightarrow \pi^*(fbmb) / MLCT / LLCT / IL$	
				H-3→L+1(27%)	$d(Ir)+\pi(fbmb) \rightarrow \pi^*(fptz)/MLCT/LLCT$	
	\mathbf{S}_{18}	258/4.81	0.1814	H-2→L+2(55%)	π (fbmb) $\rightarrow \pi^*$ (fbmb)/LLCT/IL	
2b	\mathbf{S}_1	349/3.55	0.0002	H→L(93%)	$d(Ir)+\pi(dfbmb)\rightarrow\pi^*(fptz)/MLCT/LLCT$	363
	S_2	337/3.68	0.0601	H-1→L(92%)	$d(Ir)+\pi(dfbmb)\rightarrow\pi^*(fptz)/MLCT/LLCT$	316
	S_3	306/4.05	0.0284	H-3→L(82%)	$d(Ir)+\pi(fptz)\rightarrow\pi^*(fptz)/MLCT/IL$	
	S_6	289/4.30	0.5070	H-1→L+2(64%)	$d(Ir)+\pi(dfbmb)\rightarrow\pi^*(dfbmb)/MLCT/LLCT/IL$	293
				H-1→L+1(27%)	$d(Ir)+\pi(dfbmb)\rightarrow\pi^*(fptz)/MLCT/LLCT$	
	S ₁₀	276/4.50	0.0291	H-4→L(37%)	$\pi(dfbmb) \rightarrow \pi^*(fptz)/LLCT$	
				H-5→L(27%)	$\pi(dfbmb) \rightarrow \pi^*(fptz)/LLCT$	
	S_{13}	264/4.69	0.0465	H-3→L+2(34%)	$d(Ir)+\pi(fptz)\rightarrow\pi^*(dfbmb)/MLCT/LLCT$	
				H-3→L+1(31%)	$d(Ir)+\pi(fptz)\rightarrow\pi^*(fptz)/MLCT/IL$	
	\mathbf{S}_{20}	252/4.91	0.1489	$H\rightarrow L+4(25\%)$	d(Ir)+ π (dfbmb) $\rightarrow \pi^*$ (dfbmb)/MLCT/LLCT/IL	
				H-9→L(17%)	$d(Ir) + \pi (dfbmb + fptz) \rightarrow \pi^*(fptz) / MLCT / LLCT / IL$	
3b	\mathbf{S}_1	350/3.54	0.0006	H→L(95%)	$d(Ir)+\pi(fbmb)\rightarrow\pi^*(bptz)/MLCT/LLCT$	363
	S_2	333/3.72	0.0791	H-1→L(94%)	$d(Ir)+\pi(fbmb)\rightarrow\pi^*(bptz)/MLCT/LLCT$	322
	S_6	294/4.22	0.4854	H-1→L+2(56%)	$d(Ir)+\pi(fbmb)\rightarrow\pi^*(fbmb)/MLCT/LLCT/IL$	298
				H-1→L+1(39%)	$d(Ir)+\pi(fbmb)\rightarrow\pi^*(bptz)/MLCT/LLCT$	
	S ₉	274/4.52	0.0516	H-6→L(46%)	d(Ir)+ π (fbmb+bptz) $\rightarrow \pi$ *(bptz)/MLCT/LLCT/IL	
	S_{14}	262/4.73	0.0911	H-2→L+1(28%)	$\pi(\text{fbmb2}) \rightarrow \pi^*(\text{bptz})/\text{LLCT}$	
				H-6→L(23%)	$d(Ir)+\pi(fbmb+bptz)\rightarrow\pi^{*}(bptz)/MLCT/LLCT/IL$	
				H-2→L+2(21%)	π (fbmb2) $\rightarrow \pi^*$ (fbmb)/LLCT	
	S ₁₉	254/4.87	0.2156	H-3→L+2(42%)	d(Ir)+ π (fbmb+bptz) $\rightarrow \pi$ *(fbmb)/MLCT/LLCT/IL	
				H-3→L+1(20%)	$d(Ir)+\pi(fbmb+bptz)\rightarrow\pi^*(bptz)/MLCT/LLCT/IL$	
4b	\mathbf{S}_1	339/3.66	0.0002	H→L(92%)	$d(Ir)+\pi(dfbmb)\rightarrow\pi^*(bptz)/MLCT/LLCT$	
	S_2	328/3.78	0.0817	H-1→L(90%)	d(Ir)+ π (dfbmb) $\rightarrow \pi^*$ (bptz)/MLCT/LLCT	
	S_3	299/4.15	0.0296	H-3→L(79%)	$d(Ir)+\pi(bptz)\rightarrow\pi^*(dfbmb)/MLCT/LLCT$	
	S_5	289/4.29	0.4453	H-1→L+1(45%)	d(Ir)+ π (dfbmb) $\rightarrow \pi^*$ (dfbmb)/MLCT/LLCT/IL	
				H-1→L+2(37%)	d(Ir)+ π (dfbmb) $\rightarrow \pi^*$ (dfbmb)/MLCT/LLCT/IL	
	S ₉	274/4.52	0.0611	H-6→L(41%)	$d(Ir)+\pi(dfbmb+bptz)\rightarrow\pi^*(bptz)/MLCT/LLCT/IL$	
	S_{12}	265/4.68	0.0568	H-3→L+2(36%)	$d(Ir)+\pi(bptz)\rightarrow\pi^*(bptz)/MLCT/IL$	
				H-3→L+1(33%)	$d(Ir)+\pi(bptz)\rightarrow\pi^*(dfbmb)/MLCT/LLCT$	
	S ₂₀	250/4.96	0.1419	H-9→L(67%)	$d(Ir)+\pi(dfbmb+bptz)\rightarrow\pi^*(dfbmb)/MLCT/LLCT/IL$	
^{<i>a</i>} H =	= HOMO	; L= LUMO; ^{<i>b</i>}	'Experimen	tal data from Ref. [10]		

Table S12 Selected calculated wavelength (nm)/energies (eV), oscillator strength (f), major contribution and transition characters for **1b-4b** in CH₂Cl₂ media, along with the experimental data for **2b** and **3b**

		PBE0 M06-2X			M05-2X		B3LYP	CAM-B3LYP		Exptl ^b	
	λ	Configuration ^{<i>a</i>}	λ	Configuration ^a	λ	Configuration ^{<i>a</i>}	λ	Configuration ^{<i>a</i>}	λ	Configuration ^a	
2b	521	H-2→L(50%)	451	$H \rightarrow L(49\%)$	473	H-2→L(40%)	513	H-2→L(48%)	524	H-2→L(53%)	458
		$H\rightarrow L(31\%)$		H-2→L(41%)		$H\rightarrow L(48\%)$		$H \rightarrow L(34\%)$		$H \rightarrow L(29\%)$	
3a	518	H-2→L(56%)	449	H-2→L(75%)	469	H-2→L(74%)	511	H-2→L(51%)	520	H-2→L(58%)	461
		H→L(15%)		H→L(8%)		$H \rightarrow L(6\%)$		$H \rightarrow L(24\%)$		$H \rightarrow L(7\%)$	
3b	510	H-2→L(53%)	442	H-2→L(51%)	461	H-2→L(51%)	503	H-2→L(49%)	512	H-2→L(58%)	460
		$H\rightarrow L(23\%)$		$H\rightarrow L(28\%)$		$H\rightarrow L(27\%)$		$H\rightarrow L(27\%)$		H->L(18%)	
^a H	^{<i>a</i>} H = HOMO; L= LUMO; ^{<i>b</i>} Experimental data from Ref. [10]										

Table S13 Calculated emission wavelengths (λ , in nm) for **2b**, **3a** and **3b** at PBE0, M06-2X, M05-2X, B3LYP, and CAM-B3LYP levels, respectively, together with the experimental values

TD-DFT was used to calculate the phosphorescent spectra in CH_2Cl_2 media on the basis of the lowest triplet state (T₁) geometries. In order to find a method that would allow for reliable prediction of emission properties, five different density functionals (PBE0, B3LYP, CAM-B3LYP, M05-2X²¹ and M06-2X²²) were performed on the emission properties of **2b**, **3a** and **3b**, respectively. The results are summarized in Table S13, together with the available experimental values. It shows that the PBE0, B3LYP and CAM-B3LYP significantly overestimate the emission wavelengths by >43 nm of **2b**, **3a** and **3b** compared with the corresponding experimental data. While the M06-2X functional gives improved results for **2b** (deviation of 7 nm) and relatively larger discrepancy from the experimental data by 12 and 18 nm for **3a** and **3b**, respectively. The best results are obtained at M05-2X level with smaller discrepancy of 8 and 1 nm **3a** and **3b**, and relatively larger deviation of 15 nm for **2b**, respectively. Overall, we would employ the M05-2X functional for further emission spectra calculations of all the studied complexes.

	MO^{a}	Ε		MO compo	osition(%)		Assign
			Ir	fpmb1	fpmb2	fptz	
1a	L+11	1.33	56	21	14	8	$d(Ir)+\pi^*(fpmb)$
	L	-1.85	3	1	1	95	$\pi^*(\text{fptz})$
	H-2	-6.08	20	2	16	62	$d(Ir)+\pi(fpmb2+fptz)$
			Ir	dfpmb1	dfpmb2	fptz	
2a	L+13	1.42	62	23	15	1	$d(Ir)+\pi^*(dfpmb)$
	L	-1.93	3	1	1	95	$\pi^*(\text{fptz})$
	H-2	-6.19	12	2	24	61	$d(Ir)+\pi(dfpmb2+fptz)$
			Ir	fpmb1	fpmb2	bptz	
3a	L+11	1.36	53	22	13	11	$d(Ir)+\pi^*(fpmb)$
	L	-1.75	3	1	1	95	$\pi^*(bptz)$
	H-2	-6.00	17	2	16	65	$d(Ir)+\pi(fpmb2+bptz)$
			Ir	dfpmb1	dfpmb2	bptz	
4a	L+13	1.44	61	20	16	3	$d(Ir)+\pi^*(dfpmb)$
	L	-1.77	3	1	1	95	$\pi^*(bptz)$
	H-2	-6.10	8	5	33	54	$\pi(dfpmb2+bptz)$
			Ir	fbmb1	fbmb2	fptz	
1b	L+14	1.61	86	1	7	5	d(Ir)
	L	-1.84	2	1	1	95	$\pi^*(\text{fptz})$
	Н	-5.64	35	16	43	6	$d(Ir)+\pi(fbmb)$
	H-2	-6.18	22	18	4	56	$d(Ir)+\pi(fbmb1+fptz)$
			Ir	dfbmb1	dfbmb2	fptz	
2b	L+14	1.54	86	1	6	6	d(Ir)
	L	-1.94	2	1	1	95	$\pi^*(\text{fptz})$
	Н	-5.86	36	16	37	10	$d(Ir)+\pi(dfbmb+fptz)$
	H-2	-6.31	24	18	4	53	$d(Ir)+\pi(dfbmb1+fptz)$
			Ir	fbmb1	fbmb2	bptz	
3b	L+14	1.67	86	1	8	5	d(Ir)
	L	-1.69	2	1	1	95	$\pi^*(bptz)$
	Н	-5.58	34	17	42	7	$d(Ir)+\pi(fbmb)$
	H-2	-6.11	23	18	4	55	$d(Ir)+\pi(fbmb1+bptz)$
			Ir	dfbmb1	dfbmb2	bptz	
4b	L+14	1.58	86	1	6	6	d(Ir)
	L	-1.78	2	1	1	95	$\pi(bptz)$
	Н	-5.80	36	17	34	13	$d(Ir)+\pi(dfbmb+bptz)$
	H-2	-6.22	2	11	82	5	$\pi(dfbmb)$
	H-3	-6.23	23	20	11	45	$d(Ir)+\pi(dfbmb+bptz)$
^{<i>a</i>} H =	HOMO; L=	LUMO.					

Table S14 Frontier molecular orbital energies (eV) and compositions (%) of 1a-4a and 1b-4b in the excited states, respectively

2b		\mathbf{S}_{0}			T_1	
Ir	-0.10459100	-0.20606600	-0.19415000	-0.08428300	-0.21196800	-0.18547200
Ν	-0.13901200	0.20511800	-2.40271700	-0.24351200	0.16319600	-2.35120600
Ν	0.81840300	1.73944500	-0.41705300	0.68842000	1.74648000	-0.39788600
Ν	1.36857400	2.66185200	0.37595200	1.23160700	2.67266300	0.36959900
Ν	1.42582300	3.42661400	-1.75033000	1.11014500	3.53800100	-1.74108100
Ν	2.72529600	-0.71989700	0.65889400	2.80211600	-0.58025400	0.57243500
Ν	2.40564500	-1.85888700	-1.15210700	2.47957700	-1.70462400	-1.24817100
Ν	-3.09037700	0.14463600	-0.50229400	-3.09355600	-0.05573500	-0.45166400
Ν	-2.34097500	1.69686100	0.80702300	-2.42174900	1.57371400	0.80586400
С	-0.59393000	-0.59762500	-3.37442300	-0.67277300	-0.62798100	-3.32287300
Н	-0.97637200	-1.55994600	-3.04836900	-0.94972400	-1.63598800	-3.02379000
С	-0.58194200	-0.24795700	-4.71588900	-0.77469100	-0.25343900	-4.66437200
Н	-0.96695600	-0.94200400	-5.45568600	-1.13659100	-0.97611900	-5.38754600
С	-0.07037200	0.99841400	-5.07913100	-0.39644700	1.07277600	-5.05935400
Н	-0.04642100	1.30583600	-6.12068200	-0.46977900	1.38354200	-6.09601600
С	0.41033000	1.83582500	-4.08806000	0.06124500	1.91618600	-4.09523300
Н	0.82789200	2.81476100	-4.29766600	0.37784600	2.93252000	-4.30911000
С	0.36390000	1.40880300	-2.75830900	0.14682200	1.47780700	-2.73383000
С	0.86549200	2.21716700	-1.67204900	0.62586900	2.26802100	-1.70541100
С	1.71603700	3.64393600	-0.46181100	1.45623500	3.71170700	-0.47708800
С	2.32547100	4.91743700	0.02772400	1.99177600	5.00652800	0.05835400
С	-0.00415700	-0.44958100	1.82583400	0.09801800	-0.43261300	1.83616600
С	-1.13000300	-0.82304600	2.58045800	-0.98743400	-0.84347800	2.63047500
Н	-2.08358700	-1.02425500	2.10371600	-1.94807800	-1.08280400	2.18643500
С	-1.05334400	-0.96546800	3.95575300	-0.86158200	-0.97497200	4.00271600
С	0.12146600	-0.76609400	4.66284000	0.32766900	-0.72707300	4.66995100
Н	0.17604900	-0.88063800	5.73851500	0.42164000	-0.83316400	5.74379400
С	1.23022300	-0.42369400	3.90986800	1.39736500	-0.34755800	3.88002800
С	1.20459100	-0.26268800	2.52601100	1.32119900	-0.19609800	2.49623400
С	2.47717200	0.11807600	1.82716500	2.56025100	0.22837200	1.76243100
Η	2.44787500	1.16572000	1.51041300	2.49585100	1.28120200	1.46734900
Η	3.32242200	-0.01305700	2.50324600	3.42803900	0.10900600	2.41176600
С	3.93287900	-1.33381100	0.37892900	4.03172300	-1.11849500	0.23562800
С	5.16878100	-1.32505300	1.01958500	5.28855300	-1.04777500	0.83030700
Η	5.33941200	-0.75443500	1.92648800	5.46045500	-0.48341500	1.74091400
С	6.18599900	-2.07708400	0.44300700	6.32485300	-1.72865900	0.20209400
Η	7.16427500	-2.09268300	0.91397600	7.31974000	-1.69487400	0.63580400
С	5.97879900	-2.81148100	-0.73320700	6.11553500	-2.45335400	-0.97989700
Н	6.79954600	-3.38392100	-1.15489700	6.95151700	-2.96845300	-1.44350100
С	4.74480500	-2.81866200	-1.37398900	4.86077700	-2.52225600	-1.57440300
Н	4.58993300	-3.38232500	-2.28860800	4.70526400	-3.07663200	-2.49444800
С	3.72753800	-2.06697200	-0.79393000	3.82385000	-1.84213900	-0.94256000

Table S15: The xyz coordinates for the optimized structures for 2b in the S₀ and T₁ states

С	1.78726700	-1.01963800	-0.27220300	1.85076600	-0.91708400	-0.33191300
С	1.79664200	-2.50357200	-2.29059800	1.86414500	-2.36065800	-2.37854000
Н	0.72429100	-2.56385900	-2.12115200	0.81728000	-2.54241600	-2.14729000
Н	2.18930100	-3.52086200	-2.37426700	2.35562400	-3.32452400	-2.53528100
Н	2.00702800	-1.95728200	-3.21572000	1.95148300	-1.75490900	-3.28553200
С	-1.02989900	-2.01912200	-0.29169000	-0.89588700	-2.08636400	-0.24038800
С	-0.42649500	-3.18691400	0.21397900	-0.20025200	-3.20160700	0.26540900
Η	0.53467000	-3.13911600	0.71531900	0.76976300	-3.08159300	0.73649700
С	-1.03942300	-4.42314400	0.10709800	-0.73084500	-4.47751800	0.19474200
С	-2.27969000	-4.59232700	-0.48993300	-1.97479000	-4.73709400	-0.36075300
Н	-2.75608500	-5.56159700	-0.57196800	-2.38846200	-5.73678100	-0.41331000
С	-2.88620800	-3.44124600	-0.95559700	-2.67049000	-3.63726200	-0.82597400
С	-2.31446500	-2.17031200	-0.86869700	-2.18206000	-2.33004900	-0.77830100
С	-3.14130300	-1.01470900	-1.37294600	-3.09618500	-1.24440400	-1.28480900
Н	-2.85520100	-0.69821000	-2.38304500	-2.86408400	-0.94468300	-2.31348500
Н	-4.18514900	-1.32704100	-1.43069500	-4.11925800	-1.62363100	-1.29424800
С	-4.19713800	0.88811800	-0.12793100	-4.23611600	0.64040000	-0.09209900
С	-5.55098600	0.79585900	-0.43623700	-5.58467200	0.46457600	-0.38707500
Н	-5.93917900	0.02821000	-1.09809700	-5.93388500	-0.34333900	-1.02207200
С	-6.39638200	1.73690300	0.14229800	-6.47651300	1.37705000	0.16658700
Н	-7.45972300	1.69646400	-0.07416200	-7.53719800	1.27239700	-0.04104100
С	-5.90711700	2.73490300	0.99650400	-6.03739100	2.42847500	0.98315600
Η	-6.59919900	3.45125600	1.42888900	-6.76477500	3.12144000	1.39519000
С	-4.55339200	2.82766500	1.30116800	-4.68912400	2.60489600	1.27428000
Η	-4.17388700	3.60062600	1.96168400	-4.34898300	3.42203400	1.90233500
С	-3.70957500	1.88695100	0.71956800	-3.79903800	1.69074200	0.71964600
С	-1.95171400	0.63362200	0.05283100	-1.98207000	0.51192700	0.07841700
С	-1.51672200	2.50424300	1.68268300	-1.62925300	2.45467700	1.63888600
Η	-0.49178800	2.14645800	1.66217300	-0.62628700	2.05282500	1.74930700
Η	-1.90517200	2.43664000	2.70369400	-2.09878500	2.52420500	2.62464800
Η	-1.53390600	3.54742900	1.35180300	-1.56911900	3.45212600	1.19201200
F	1.40088200	5.88714700	0.15698700	1.00288600	5.72849700	0.61429600
F	3.25504100	5.37106600	-0.82178200	2.54264600	5.74264500	-0.90576000
F	2.89975400	4.75337700	1.22572200	2.91257200	4.79218100	1.00566700
F	-2.15795100	-1.31137500	4.63663800	-1.92893000	-1.35775700	4.72154900
F	2.39485000	-0.23360200	4.56410900	2.57424100	-0.10926000	4.49549400
F	-0.41373500	-5.50650600	0.59102600	-0.02058200	-5.50871200	0.67488300
F	-4.10428400	-3.56473100	-1.52569300	-3.89342000	-3.85179400	-1.35580300

3a		\mathbf{S}_{0}			T_1	
Ir	-0.29365200	0.37864300	-0.10854300	-0.26642300	0.39978900	-0.07864400
Ν	-0.13725300	-1.18889400	1.32192300	-0.17857500	-1.12590100	1.34523200
Ν	-0.77426700	-1.54194100	2.43677100	-0.88046600	-1.48600700	2.40090400
Ν	0.85462800	-3.06315600	2.01343000	0.70175000	-3.10163200	2.03475100
Ν	1.37010900	-0.86401200	-0.84120000	1.35151600	-0.85686900	-0.81229700
Ν	1.49254300	2.66632300	-0.11128300	1.58708600	2.63652500	-0.09855900
Ν	1.72110600	1.78614900	1.86887100	1.82843300	1.73310500	1.86919600
Ν	-3.11563600	-0.16125300	-0.52670300	-3.09063000	-0.06920700	-0.55359600
Ν	-2.10252500	-1.57793800	-1.82957900	-2.08516000	-1.51639700	-1.83183000
С	-0.55653500	-3.43794300	4.02189300	-0.84458200	-3.43273100	3.94319700
С	-0.14520200	-2.66288600	2.81263000	-0.30838900	-2.65886000	2.77557500
С	0.82234900	-2.10322900	1.08628600	0.78196300	-2.12777900	1.09591700
С	1.67591200	-1.92895500	-0.06766400	1.59848500	-2.01100100	-0.01959800
С	2.74354500	-2.77906600	-0.36339500	2.64791000	-2.92767200	-0.35513000
Н	2.91258700	-3.61186500	0.30912200	2.73583600	-3.80740400	0.27364000
С	3.54537000	-2.54095400	-1.47427900	3.49435900	-2.68764100	-1.39790900
С	3.21830800	-1.41684800	-2.25257000	3.26279900	-1.46232000	-2.13154400
Н	3.79725200	-1.15440600	-3.13233500	3.89555300	-1.18248400	-2.96669200
С	2.14436200	-0.61674100	-1.90807500	2.20333200	-0.61787300	-1.79750500
Н	1.86989200	0.25367400	-2.49688300	2.01721500	0.28573900	-2.37391500
С	4.72876500	-3.42783100	-1.84933100	4.62914700	-3.61289300	-1.81045400
С	4.50980200	-3.98818100	-3.26428500	4.40410700	-4.08021300	-3.25854100
Η	3.59708400	-4.59254800	-3.31211100	3.46854600	-4.64429500	-3.34492400
Η	5.35469200	-4.62651400	-3.54762100	5.22609100	-4.73116000	-3.58022400
Н	4.42857700	-3.19244100	-4.01234900	4.35429200	-3.23764100	-3.95716900
С	4.89774200	-4.60120400	-0.88118900	4.71639700	-4.84631600	-0.90975400
Н	5.75338600	-5.21087900	-1.19142500	5.54433800	-5.48550700	-1.23636100
Н	4.01550200	-5.25111700	-0.86876200	3.79845000	-5.44376100	-0.95034000
Н	5.08841400	-4.26169700	0.14304400	4.90050600	-4.57135800	0.13503000
С	6.01337000	-2.58298500	-1.82585500	5.96379800	-2.85303800	-1.72453200
Η	5.96645300	-1.74796800	-2.53294000	5.97420600	-1.96695100	-2.36877500
Η	6.87420000	-3.20434900	-2.09895000	6.79016800	-3.50211200	-2.03871800
Η	6.19447900	-2.17051300	-0.82720100	6.15939500	-2.52377400	-0.69792600
С	-0.11280300	1.75160700	-1.58930700	-0.06491100	1.77702000	-1.55959000
С	-0.77458300	1.78227900	-2.82001900	-0.75290800	1.84047900	-2.77389200
Н	-1.55336700	1.06301400	-3.05626800	-1.55047700	1.14101500	-3.00583900
С	-0.45648500	2.73902100	-3.77607100	-0.43335700	2.80380000	-3.72213200
С	0.52303000	3.69452000	-3.56934200	0.56855500	3.73687900	-3.51956500
Н	0.74929300	4.42058400	-4.34253000	0.79300400	4.47118900	-4.28545000
С	1.19825800	3.69391000	-2.35017100	1.26804700	3.70454300	-2.31505800
Η	1.97478500	4.42994900	-2.18733800	2.05615500	4.42827800	-2.15437000
С	0.87023000	2.74854500	-1.38563900	0.94440900	2.74758300	-1.36044600

Table S16: The xyz coordinates for the optimized structures for 3a in the S₀ and T₁ states

С	2.39755400	3.48049800	0.56179900	2.54998900	3.40133800	0.55336000
С	3.09595500	4.64394000	0.24073600	3.29897400	4.52827900	0.21646100
Н	2.99686300	5.13711700	-0.71682200	3.20416600	5.02704700	-0.73849300
С	3.93878900	5.18116600	1.20873700	4.19398600	5.01730700	1.16258300
Н	4.49077300	6.08730600	0.97735200	4.78674900	5.89375000	0.91827000
С	4.08999200	4.58766800	2.46680200	4.34849800	4.41126400	2.41427000
Н	4.75954900	5.03579500	3.19463200	5.06055000	4.82047600	3.12443100
С	3.39147900	3.43264400	2.79915900	3.60239000	3.29122700	2.76154000
Н	3.50118900	2.96632800	3.77310500	3.71855800	2.81331200	3.72903400
С	2.54770500	2.89946100	1.83254300	2.70639000	2.80622800	1.81676200
С	1.08278100	1.63405400	0.68832500	1.15617400	1.61861500	0.70532200
С	1.54262500	0.95460100	3.04160000	1.65375400	0.88512900	3.03043700
Н	2.38240400	0.26198500	3.15818900	2.42938600	0.11353400	3.06893600
Н	0.61610500	0.39110100	2.94304300	0.67283300	0.41478700	2.98222000
Н	1.47717300	1.59498100	3.92554900	1.70959800	1.50084600	3.93192700
С	-1.83841600	1.37226100	0.73475600	-1.80267000	1.42029700	0.75138100
С	-1.77524200	2.44078600	1.63065500	-1.73012900	2.47586300	1.66186100
Н	-0.82683100	2.86901100	1.93880400	-0.77608800	2.87653500	1.98987400
С	-2.93412700	2.99064300	2.16177500	-2.88571400	3.04153400	2.18242500
С	-4.19355800	2.52098800	1.83606500	-4.14929700	2.59907600	1.83168700
Н	-5.07632900	2.97332900	2.27421400	-5.02909300	3.06167100	2.26518300
С	-4.28699300	1.46122100	0.93778500	-4.25202000	1.55386100	0.91782200
Н	-5.26863700	1.08541200	0.68282800	-5.23710400	1.19651500	0.64966500
С	-3.12949100	0.91174200	0.40121900	-3.09741000	0.99026100	0.38909900
С	-4.12307000	-0.89525900	-1.14341000	-4.10252200	-0.76282100	-1.20930800
С	-5.51679800	-0.88612400	-1.09209900	-5.49588700	-0.69707300	-1.21136300
Н	-6.07235600	-0.19975300	-0.46817500	-6.04669000	0.01295400	-0.60997900
С	-6.20063800	-1.80532400	-1.88143800	-6.18444200	-1.58428000	-2.03203100
Н	-7.28612300	-1.81387600	-1.85214900	-7.26964100	-1.54843400	-2.04616500
С	-5.52925400	-2.71525400	-2.70538500	-5.51825500	-2.51669400	-2.83565600
Н	-6.09898800	-3.41981000	-3.30361200	-6.09254000	-3.19442000	-3.45993000
С	-4.14063700	-2.73080100	-2.76551700	-4.13035200	-2.58599700	-2.84553000
Н	-3.61083300	-3.43641300	-3.39787600	-3.60404100	-3.30514300	-3.46532300
С	-3.46090400	-1.81012900	-1.97788500	-3.44534200	-1.69673400	-2.02673600
С	-1.88303800	-0.58105700	-0.93997100	-1.86163700	-0.52947500	-0.93613800
С	-1.09193500	-2.33102800	-2.53260800	-1.07571000	-2.30233100	-2.50353600
Н	-1.01844900	-3.34764600	-2.13185900	-1.11188500	-3.34124500	-2.16042000
Н	-0.13667900	-1.82533900	-2.41682700	-0.09975100	-1.87935000	-2.27651200
Н	-1.34532200	-2.38021600	-3.59613400	-1.24422400	-2.27210100	-3.58465100
F	-1.37995100	-2.73013300	4.80123200	-1.48744900	-2.63559000	4.80151100
F	-1.19147100	-4.57567400	3.68855000	-1.71016900	-4.37518000	3.53566100
F	0.50981200	-3.78929600	4.75828600	0.14080300	-4.05017500	4.60338000
F	-1.11665700	2.72879400	-4.94694100	-1.11641400	2.82543600	-4.87881100
F	-2.82460000	4.01706100	3.02320000	-2.77174500	4.05321700	3.05941700

3b		\mathbf{S}_{0}			T_1	
Ir	0.48598500	0.12434500	-0.17423000	-0.45500500	0.20985300	-0.17189900
Ν	-0.86098500	0.09999000	1.53320300	0.50395400	-0.62134600	1.52333100
Ν	-0.81018700	0.39890100	2.83446900	0.22846100	-0.84305500	2.79683800
Ν	-2.87645000	-0.38860400	2.36613700	2.36307200	-1.57644900	2.43743000
Ν	-1.47289400	-0.60263300	-0.98519300	1.47592300	-0.50489900	-0.97529700
Ν	-0.65013300	2.77583400	-1.45035300	-1.31826600	-2.52078900	-1.48008100
Ν	0.23741100	3.03209700	0.50634200	-2.22080400	-2.14254900	0.45061400
Ν	1.47220600	-2.35715200	1.40263300	0.51390700	2.71946200	1.37468500
Ν	1.30845900	-2.73035300	-0.72340100	0.84726700	2.87500500	-0.75930000
С	-2.39418400	0.22737900	4.72757900	1.46666700	-1.71311800	4.75033800
С	-2.03057500	0.09438100	3.28503100	1.36425700	-1.40290000	3.28664500
С	-2.09683400	-0.36427000	1.28242500	1.81501400	-1.09011500	1.29058500
С	-2.45551600	-0.74139200	-0.06651000	2.34105900	-1.04092500	0.01380800
С	-3.72863300	-1.19910000	-0.39656800	3.65645100	-1.50598000	-0.31586200
Н	-4.44870700	-1.27741700	0.41175100	4.24206400	-1.90312900	0.50869200
С	-4.04412000	-1.53301800	-1.71256000	4.13858800	-1.45369100	-1.59402900
С	-3.01873900	-1.37021600	-2.65267600	3.23463900	-0.91639900	-2.57468800
Н	-3.17041900	-1.59774600	-3.70150300	3.51322900	-0.84203400	-3.61879500
С	-1.77329100	-0.91016600	-2.25118900	1.95965500	-0.47596200	-2.20426300
Н	-0.97176800	-0.77626100	-2.97203400	1.29161400	-0.08345400	-2.96772400
С	-5.43698800	-2.04223700	-2.07108600	5.54119500	-1.95260200	-1.94121700
С	-6.47547700	-0.97364200	-1.69235200	5.64222100	-3.45245700	-1.61991800
Η	-6.44763800	-0.73871900	-0.62357400	5.45165400	-3.64922300	-0.55970800
Η	-7.48375300	-1.33197600	-1.93055300	6.64563300	-3.82709800	-1.85759000
Н	-6.30525500	-0.04390800	-2.24684700	4.91585200	-4.02909100	-2.20389500
С	-5.57266000	-2.34766600	-3.56459400	5.86990300	-1.75210000	-3.42365300
Н	-5.40787900	-1.45610600	-4.18078900	5.18688700	-2.31205600	-4.07321300
Н	-6.58549900	-2.70851800	-3.77330700	6.88482100	-2.11176200	-3.62650500
Н	-4.87247400	-3.12675700	-3.88781100	5.83015400	-0.69467700	-3.71047300
С	-5.71549600	-3.33085400	-1.27951200	6.57981000	-1.18425500	-1.10849900
Η	-4.98879900	-4.11181200	-1.52979600	6.53441200	-0.10972600	-1.31885300
Η	-6.71662500	-3.70712900	-1.52005800	7.59205400	-1.53625400	-1.34315700
Η	-5.67136400	-3.16284900	-0.19865600	6.41860500	-1.32239700	-0.03432000
С	-0.01766600	2.10190300	-0.44627300	-1.38105300	-1.60928300	-0.46985300
С	-0.81713400	4.11092400	-1.12302800	-2.09015200	-3.63324200	-1.19037300
С	-1.40730600	5.17183600	-1.80287700	-2.33009600	-4.81064500	-1.89213300
Н	-1.86215000	5.04280800	-2.78002200	-1.87027300	-5.00591300	-2.85576400
С	-1.39855200	6.41080400	-1.17156500	-3.18141500	-5.73703400	-1.30058700
Η	-1.85142000	7.26361100	-1.66839700	-3.39210600	-6.66948300	-1.81565500
С	-0.82201600	6.57923400	0.09501900	-3.76819300	-5.49404600	-0.05077000
Η	-0.83749000	7.56040000	0.56008900	-4.42474600	-6.24238600	0.38291600
С	-0.23409600	5.51731500	0.77327100	-3.52523700	-4.31804900	0.64990300

Table S17: The xyz coordinates for the optimized structures for 3b in the S₀ and T₁ states

Η	0.20238300	5.65600500	1.75693400	-3.97792800	-4.14301500	1.62033500
С	-0.24035900	4.27710800	0.14075100	-2.67540000	-3.38839500	0.05650100
С	0.96128600	2.74501800	1.74213000	-2.60999100	-1.46852400	1.68646900
Н	0.29363200	2.19970000	2.41725200	-1.77887100	-1.53719000	2.39674000
Η	1.19872700	3.70759400	2.20153200	-3.45468800	-2.02684400	2.09732600
С	2.22387000	1.96919800	1.48905600	-3.00691200	-0.03563900	1.46086700
С	2.20375300	0.80819400	0.68773100	-2.19708800	0.83031400	0.69515900
С	3.43491400	0.15595800	0.50667000	-2.66523400	2.14720400	0.54496300
Н	3.51710900	-0.71863000	-0.13141100	-2.12715900	2.86627900	-0.06506000
С	4.58967800	0.61252000	1.12163600	-3.83420700	2.57233100	1.15382000
С	4.60568800	1.73918300	1.92678400	-4.61750400	1.72846000	1.92421700
Н	5.52853900	2.07361300	2.38870700	-5.53165000	2.09055800	2.38257800
С	3.40341500	2.41640400	2.08921300	-4.18886600	0.41394400	2.05614600
Н	3.38257900	3.31577900	2.70232700	-4.79033300	-0.28043200	2.64022600
С	-1.07127600	2.22379600	-2.71580600	-0.59440700	-2.37154800	-2.72100500
Η	-0.45627800	1.35413100	-2.93672600	-0.48526300	-1.31042700	-2.93124100
Н	-0.90695500	2.96849700	-3.49965800	-1.17798300	-2.82619900	-3.52620000
Η	-2.13036400	1.94719400	-2.69579000	0.38863500	-2.84929500	-2.66719200
С	1.10862800	-1.77908600	0.22539100	0.36663600	2.04706100	0.20123500
С	1.88670200	-3.66232200	1.20229200	1.10232500	3.95438400	1.16146600
С	2.34333600	-4.63501200	2.08570200	1.45462100	4.97746000	2.03580600
Η	2.42808400	-4.44083300	3.15007200	1.28650000	4.89530300	3.10482300
С	2.68550400	-5.86971400	1.54455800	2.03764000	6.11090900	1.47962600
Η	3.04571000	-6.65624900	2.20087200	2.32829800	6.93157200	2.12857300
С	2.57360700	-6.11963100	0.16997800	2.26067000	6.21419800	0.09967500
Η	2.84813300	-7.09643200	-0.21710400	2.72148800	7.11315200	-0.29874500
С	2.11770900	-5.14491500	-0.71181400	1.90778300	5.18973700	-0.77259200
Η	2.03235900	-5.35046200	-1.77420900	2.09046900	5.27767600	-1.83884300
С	1.77945400	-3.90846800	-0.17014000	1.32035600	4.05770200	-0.21577700
С	1.06715800	-2.51686000	-2.13961500	0.85244600	2.56126000	-2.17812800
Η	-0.01173600	-2.60576400	-2.31565600	1.71953400	1.92114400	-2.38052000
Η	1.53869400	-3.34856800	-2.66958600	1.02948600	3.50262800	-2.70491100
С	1.63685900	-1.21617400	-2.65329100	-0.44255500	1.96101000	-2.66953900
С	1.50793600	-0.00346300	-1.93254100	-1.14692500	0.97600400	-1.93530400
С	2.14422400	1.11625900	-2.50155000	-2.37428200	0.55969300	-2.48535300
Η	2.14026600	2.07235100	-1.98693900	-3.00329300	-0.15001800	-1.95674400
С	2.80517700	1.04149100	-3.71582100	-2.82856900	1.04209200	-3.70040500
С	2.89972800	-0.13876900	-4.43648000	-2.11928500	1.97891700	-4.43629700
Η	3.43225900	-0.16758300	-5.38109100	-2.50615900	2.34498700	-5.38137600
С	2.31727500	-1.26721200	-3.87568700	-0.92902100	2.44072000	-3.89147200
Η	2.40341300	-2.21748900	-4.40063800	-0.36715900	3.20300900	-4.42906200
С	1.53314800	-1.73023700	2.70669800	0.07010700	2.29740000	2.68750600
Η	2.55633900	-1.79743800	3.08941400	-0.50501100	3.10926000	3.14282000
Η	0.84821500	-2.23532800	3.39498200	0.92859000	2.05614300	3.32221500

Н	1.24580100	-0.68619900	2.62802400	-0.56438300	1.42056500	2.59584500
F	-3.64777100	0.67480900	4.87676500	2.43767700	-2.59139000	4.99808600
F	-2.31992200	-0.95554000	5.36636900	1.73375500	-0.59609000	5.45022500
F	-1.57271300	1.07312400	5.36206000	0.31633300	-2.21275300	5.21971200
F	5.73733200	-0.06198000	0.92356700	-4.22427600	3.84889900	0.98614100
F	3.37670800	2.15186700	-4.21333800	-3.99861000	0.59024000	-4.18271400

Scheme S1. Schematic structures of FIrpic, Fir6 and FIrtaz.

Figure S1. Calculated HOMO and LUMO surfaces for the studied complexes obtained from DFT calculations at their S_0 optimized geometries.