Supporting Information

Precise preparation of highly monodisperse ZrO$_2$@SiO$_2$ core-shell nanoparticles with adjustable refractive index

Xiaoli Yang,a,b Ning Zhao,a,* Qingzhu Zhou,a Chao Cai,a,b Xiaoli Zhang,a and Jian Xua,**

aBeijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

bUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

*Corresponding author. E-mail address: jxu@iccas.ac.cn, zhaoning@iccas.ac.cn; Tel.:+86 10 62657919; Fax: +86 10 62657919.

Fig. S1 Size distribution of ZrO$_2$ nanoparticles and resulted ZrO$_2$@SiO$_2$ CSNs.
Fig. S2 FT-IR spectra of ZrO$_2$ prepared without (a) and with (b) citric acid.

Fig. S3 The change of silica shell thickness prepared by different concentrations of TEOS.
Fig. S4 Comparison photos of ZrO$_2$ nanoparticles (left) and methyl modified ZrO$_2$@SiO$_2$ nanoparticles (right) dispersed in (A) dimethyl benzene, (B) isoamyl alcohol and (C) chloroform. (D) is the dispersion of modified ZrO$_2$@SiO$_2$ in ethanol.
Fig. S5 Photographs of CSNs dispersed in different conditions after storage for more than 2 months: (A) ZrO$_2$@SiO$_2$ CSNs in ethanol; (B) to (D) are the photos of MTES modified ZrO$_2$@SiO$_2$ CSNs dispersed in ethanol, isoamyl alcohol and chloroform, respectively. (E) is the corresponding DLS curves of (A) to (D).