Electronic Supplementary Information
for

Deep--red excimer emission from Ir doped organic electroluminescent devices

Araceli Gutiérrez–Llorente¹, Marta Mroz², Juan Cabanillas–González²
¹Departamento de Tecnología Electrónica, ESCET
Universidad Rey Juan Carlos, Calle Tulipán, s/n 28933 Madrid, Spain
²Instituto Madrileño de Estudios Avanzados (IMDEA-Nanociencia)
Cantoblanco, 28049 Madrid, Spain

Corresponding author: araceli.gutierrez@urjc.es

1. Influence of the concentration by weight of solutions on electroluminescence
2. UV-VIS absorption spectra of blended films
3. ¹H Nuclear Magnetic Resonance (NMR) spectrum of IrDBQ
4. Luminance – voltage and current density characteristics

Figure S1: Influence of the concentration by weight of PF26:IrDBQ solutions on electroluminescence. EL spectra at room temperature of 90:10-PF2/6:Ir based devices with different emitting layer thickness. The diode structure was: ITO/PEDOT:PSS/PF26:Ir(90:10)/Ba/Al. The blended active layer was prepared from 2 wt.% (black), 3 wt.% (red) or 4 wt.% (blue) o-xylene solutions. EL spectra were measured under dc conditions at a constant current density of 100 mA/cm². Electric field was 3 MV/cm² (2 wt.%), 2.6 MV/cm (3 wt.% and 2.1 (4 wt.%) MV/cm. They are normalized at the highest energy peak.
Figure S2: UV-VIS absorption spectra of thin films of PF2/6 and PF2/6:IrDBQ (90:10). Both films were deposited from 2% wt. ortho-xylene solutions by spin-coating on quartz substrates (SUPRASIL 2 grade B, from Heraeus).

Figure S3: 1H Nuclear Magnetic Resonance (NMR) spectrum: 1H NMR (400MHz) spectrum of Ir(DBQ)$_2$acac measured in deuterated chloroform (CDCl$_3$). For each peak, integrated area is indicated in the bottom part of the spectrum. The same peaks reported by Duan et al. [Adv. Mater., 15(3), 2003, 224] are displayed.
Figure S4: Luminance – voltage and current density - voltage characteristics. Emitting layers of devices are blends of PF26:IrDBQ with different doping ratios (0.5%, 5%, 10%, 15%). They were spin coated from 2% wt. o-xylene solutions.