Supporting Information

A guanidine derivative of naphthalimide with excited-state deprotonation coupled intramolecular charge transfer property and its application

Jin Zhou, a,c Huiying Liu, b Bing Jin, a,c Xiangjun Liu, a Hongbing Fu b and Dihua Shangguan* a

1. pKa measurement

The ground state pKₐ values of ENG and TNG were determined by the change of absorbance 350 nm upon the pH changing from 5.78-11.2. The absorbance at 350 nm was plotted versus pH value of buffer. The excited state pKₐ values of ENG and TNG were determined by the change of the fluorescence intensity at 580 nm (excited at 350 nm) upon the pH changing from 0.3-3.38. The fluorescence intensity at 580 nm was plotted versus pH value of buffer. pKa values were calculated according to the following equation:

\[pK_a = pH + \log \left(\frac{(A_{HB}^- - A_X)}{(A_x - A_B^-)} \right) \]

\[pK_{a}^* = pH + \log \left(\frac{(I_B - I_X)}{(I_x - I_{HB}^+)} \right) \]

where, \(A_{HB}^- \), \(A_X \) and \(A_B^- \) represent the absorbance of absolute acid form, the absorbance at the pH chosen and the absorbance of absolute base form respectively. \(I_B \), \(I_X \) and \(I_{HB}^+ \) represent the fluorescence intensity at absolute base form, the fluorescence intensity at the pH chosen and the fluorescence intensity of absolute acid form respectively. The pKa values are derived from the nonlinear curve-fitting of these data (Originpro 8.0).

The ground-state pKa was calculated to be 8.53 ± 0.03 as shown in Figure S1a. The pKₐ* in the excited state is calculated to be 0.895 ± 0.03 as shown in Figure S1b.

![Figure S1](image-url)

Figure S1. The response curve of ENG to pH: (a) absorbance change at 350 nm with pH values in the range of pH 5.78-11.14; (b) fluorescence intensity change at 580 nm (λₑₓ = 350 nm) with pH value in the range of pH 0.3-3.38.
2. Comparison of the 1H NMR spectrum of ENG in acidic state and basic state

Figure S2. 1H NMR spectra of ENG taken in a DMSO-d_6 acid form (the top) and basic form (the bottom).
3. Fluorescence properties of TNG

The changes of fluorescence intensity and wavelength of TNG upon the pH changing are similar with that of ENG as shown in Figure S3. In the pH range from 4.0-12.0, the emission band around 470 nm decreased with the pH increase, while the emission band around 580 nm did not changed much. In the more acid environment, the emission band around 580 nm decreased upon the pH decrease. As shown in Figure S3 b and d, the pKa at the ground state is calculated to be 8.49 ± 0.1 and the pKa* in the excited state is calculated to be 0.904 ± 0.08.

![Figure S3](image)

Figure S3. (a) Fluorescence spectra obtained in Glycine-HCl-NaOH buffer at pH 5.78, 7.88, 8.10, 8.28, 8.53, 8.78, 9.08, 9.52, 9.84, 10.27, 11.14, excited at 365 nm; (b) The pH response curve of absorbance at 350 nm from pH 5.78-11.14; (c) Fluorescence spectra measured in Glycine-HCl buffer at pH 0.3, 0.39, 0.77, 1.11, 1.39, 1.79, 2.23, 2.62, 3.38, excited at 350 nm; (d) The pH response curve of fluorescence intensity at 580 nm from pH 0.3-3.38.

The excitation and emission spectra of TNG in different solvents are similar with that of ENG. Different from ENG, TNG has a butyl substitution at 9-position (imide N atom) of naphthalimides. These phenomena indicate that the different substituent group in N-9 of naphthalimide can’t affect their fluorescence properties and the hydroxyl group of hydroxyethyl don’t involve the proton transfer.
Figure S4. Static excitation and fluorescence spectra of TNG in different solvent; as figures show the solvent are toluene, the increase of concentration of ENG in toluene, DCM, CHCl₃, acetone, dioxane, acetic ether, DMF, DMSO, ethanol; fluorescence spectrum excited at 350 nm (up triangle dot), excitation spectrum spectrum detected at 460 nm (diamond dot) and excitation spectrum detected at 600 nm (circle dot).

4. Φᵣ: fluorescence quantum yield

The fluorescence quantum yields in different solvents have been determined on the basis of the absorption and fluorescence spectra of the probe. The quinine sulfate (purchased from jk-chemical company) was used as standard with Φᵣ = 0.54 ± 0.02 (in 1.0 N sulfuric acid). Where A_{ref}, F_{ref}, n_{ref} and A_{sample}, F_{sample}, n_{sample} represent the absorbance at the excited wavelength, the integrated emission band area and the solvent refractive index of the standard and the sample, it follows a formula like this:

$$\Phi_{\text{sample}} = \Phi_{\text{ref}} \times \frac{(A_{\text{ref}} \times F_{\text{sample}}) \times (n_{\text{sample}}^2 / n_{\text{ref}}^2)}{(A_{\text{sample}} \times F_{\text{ref}})}$$

5. Absorption spectra of ENG in different surfactant systems
Figure S5. Absorption spectra of ENG (50 µM) in different concentration of surfactants: (a) Triton X-100 solution; (b) CTAB solution; (c) SDS solution.

6. Luminescence of ENG in different solvents

![Figure S6. Change of the fluorescence emission observed in different solvents, excitation under 300 nm transmission of UV light source. From left to right are ENG (5 µM, 2.5 µM, 2.5 µM, 5 µM, 5 µM, 5 µM, 5 µM, 10µM, 50 µM) in toluene, dichloromethane, chloroform, acetic ether, Dioxane, acetone, acetonitrile, DMSO, ethanol, and H₂O.](image)

7. Spectral change of ENG with the addition of F⁻

![Figure S7. Static excitation spectra of ENG in CH₃CN: excitation spectrum detected at 450 nm (black line) in the absence of F⁻ and excitation spectrum detected at 560 nm (red line) in the presence of 10 µM F⁻ (TBAF).](image)
Figure S8. Fluorescence spectral change of ENG (4 µM) in CH₃CN with the addition of different halide anions: 10 µM F⁻, 40 µM Cl⁻, 40 µM Br⁻, 10 µM I⁻, with excitation of 365 nm.

8. Response of ENG to the addition of F⁻

The emission intensity at 457 nm shows a linear response to F⁻ in the range of 0.75–1.75 µM with a detection limit of 0.28 µM calculated by fluorescence titration. The linear equation: \(y = -563.4x + 1334.5 \), \(R^2 = 0.996 \). The apparent equilibrium dissociation constant (Kd) between ENG and F⁻ in acetic ether was calculated to be 0.45 ± 0.02 µM based on the curve of fluorescence change at 457 nm (Sigma plot 10.0).

Figure S9. (a) Fluorescence intensity change of ENG in acetic ether solution with different concentration of F⁻ (TBAF) 0-2.5 µM (Ex/Em: 375/457 nm), Inset: linear response plot of emission intensity versus F⁻ (0.75-1.75 µM); (b) Fluorescence intensity ratio of ENG at 457 and 548 nm with excitation at 375 nm; (c) Plot of the fluorescence decrease (457 nm) versus concentration of free F⁻ for the determination of Kd.

The emission intensity at 445 nm show a linear response to F⁻ in the range of 0–5 µM with a detection limit of 68 nM calculated by fluorescence titration. The linear equation: \(y = -578.06x + 3799.9 \), \(R^2 = 0.996 \). (Origin 8.0) The apparent Kd between ENG and F⁻ in acetonitrile was calculated to be 0.78 ± 0.07 µM based on the curve of fluorescence change at 445 nm (Sigma plot 10.0).

Figure S10. (a) Fluorescence intensity change of ENG in acetonitrile solution with different concentration of F⁻ (TBAF) 0-10 µM (Ex/Em: 365/445 nm), Inset: linear plot plot of emission intensity versus F⁻ (0–5 µM); (b) Fluorescence intensity ratio of ENG at 445 and 569 nm with excitation at 365 nm; (c) Plot of the fluorescence decrease (445 nm) versus concentration of free F⁻ for the determination of Kd.
9. **Structure Characterization Figures**

1 H NMR spectra
Current Data Parameters

NAME dzy-120610-tng
EXPNO 10
PROCNO 1

F2 - Acquisition Parameters

Date_ 20120610
Time 20.24
INSTRUM spect
PROBHD 5 mm DUL 13C-1
PULPROG zgpg30
TD 65536
SOLVENT DMSO
NS 2299
DS 4
SWH 17985.611 Hz
FIDRES 0.274439 Hz
AQ 1.8219508 sec
RG 5792.6
DW 27.800 usec
DE 6.50 usec
TE 299.6 K
D1 2.00000000 sec
D11 0.03000000 sec

======== CHANNEL f1 ========
NUC1 13C
P1 12.50 usec
PL1 2.00 dB
SFO1 52.4752953 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 100.00 usec
PL2 3.00 dB
PL12 22.74 dB
PL13 23.00 dB
SFO2 120.1312005 MHz

F2 - Processing parameters

SI 32768
SF 75.4677850 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40