Support Information

Synthesis and characterization of some novel tetrazol liquid crystals.

Muhammad Tariq,1,2 Shahid Hameed,2 Ivan H. Bechtold3 Adailton J. Bortoluzzi4 and Aloir A. Merlo*1

1. Institute of Chemistry, UFRGS, Porto Alegre, RS, Brazil.
2. Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan.
3. Department of Chemistry, UFSC, Florianópolis, SC, Brazil.
4. Department of Physics, UFSC, Florianópolis, SC, Brazil.

Figure S1. Schlieren texture observed for nematic mesophase upon cooling at 79°C for 5g.
Figure S2. (a), (b) and (c) Schlieren texture observed during the mesophase transition from nematic to smectic mesophase upon cooling at ca 71°C for 5g.
Figure S3. DSC TA Q2000 at 10 °/min for 5a.

Figure S4. DSC TA Q20 at 5 °/min for 5a.
Figure S5. DSC TA Q20 at 5 °/min for 5b.

Figure S6. DSC TA Q20 at 5 °/min for 5c.
Figure S7. DSC TA Q2000 at 10 °C/min for 5d.

Figure S8. DSC TA Q2000 at 2 °C/min for 5d.
Figure S9. DSC TA Q2000 at 5 °C/min and 2 °C/min for 5e (on November, 22th).

Figure S10. DSC TA Q2000 at 5 °C/min for 5e (on May, 17th)
Figure S11. DSC TA Q2000 at 10 °/min for 5f.

Figure S12. DSC TA Q2000 at 2 °/min for 5f.
Figure S13. DSC TA Q2000 at 3 °/min for 5g.

Figure S14. DSC TA Q20 at 1 °/min for 5h.
Figure S15. TGA/DTG curve for 5c in the temperature range 20 – 600 °C. A derivative weight loss curve has been added to show the point at which weight loss is most apparent.
SUPPORT INFORMATION

X-Ray data

Synthesis and Characterization of some novel tetrazol Liquid Crystals.

Muhammad Tariq,¹,² Shahid Hameed,² Ivan H. Bechtold³ Adailton J. Bortoluzzi⁴ and Aloir A. Merlo*¹

1. Institute of Chemistry, UFRGS, Porto Alegre, RS, Brazil.
2. Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan.
3. Department of Chemistry, UFSC, Florianópolis, SC, Brazil.
4. Department of Physics, UFSC, Florianópolis, SC, Brazil.
1. Single Crystal X-ray Diffraction

1.1. Compound 5a

Table 1. Crystal data and structure refinement for 5a.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{26}H_{34}N_{4}O_{3}</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Formula weight</td>
<td>450.57</td>
</tr>
<tr>
<td>Temperature</td>
<td>190(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pī</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 8.8808(3) Å, (\alpha= 82.731(2)^\circ)</td>
</tr>
<tr>
<td></td>
<td>b = 10.9801(3) Å, (\beta= 72.7700(10)^\circ)</td>
</tr>
<tr>
<td></td>
<td>c = 13.8034(4) Å, (\gamma= 76.798(2)^\circ)</td>
</tr>
<tr>
<td>Volume</td>
<td>1249.11(7) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.198 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.079 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>484</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.40 x 0.20 x 0.18 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.91 to 31.10°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-12 (\leq) h (\leq) 12, -15 (\leq) k (\leq) 15, -20 (\leq) l (\leq) 20</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>28779</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>8005 [R(int) = 0.0207]</td>
</tr>
<tr>
<td>Completeness to theta = 31.10°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>8005 / 0 / 300</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.046</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0629, wR2 = 0.1824</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0785, wR2 = 0.2006</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.146 and -0.468 e.Å⁻³</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C
This journal is © The Royal Society of Chemistry 2013
Table 2. Bond lengths [Å] and angles [°] for 5a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
<th>Bond</th>
<th>Length [Å]</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-N(1)</td>
<td>1.3321(17)</td>
<td>C(32)-H(32B)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(1)-N(4)</td>
<td>1.3515(17)</td>
<td>C(33)-C(34)</td>
<td>1.521(2)</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(11)</td>
<td>1.4678(17)</td>
<td>C(33)-H(33A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(2)-O(2)</td>
<td>1.2016(17)</td>
<td>C(33)-H(33B)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(2)-O(1)</td>
<td>1.3613(16)</td>
<td>C(34)-C(35)</td>
<td>1.518(2)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(21)</td>
<td>1.4746(17)</td>
<td>C(34)-H(34A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(11)-C(16)</td>
<td>1.3905(19)</td>
<td>C(34)-H(34B)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.3944(18)</td>
<td>C(35)-C(36)</td>
<td>1.523(3)</td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.3884(18)</td>
<td>C(35)-H(35A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>0.9500</td>
<td>C(35)-H(35B)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.3807(19)</td>
<td>C(36)-H(36A)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.383(2)</td>
<td>C(36)-H(36B)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(13)-H(13)</td>
<td>0.9500</td>
<td>C(36)-H(36C)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.383(2)</td>
<td>C(37)-C(38)</td>
<td>1.4316(17)</td>
<td></td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.3897(18)</td>
<td>C(41)-O(3)</td>
<td>1.4336(17)</td>
<td></td>
</tr>
<tr>
<td>C(15)-H(15)</td>
<td>0.9500</td>
<td>C(41)-C(42)</td>
<td>1.522(2)</td>
<td></td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>0.9500</td>
<td>C(41)-H(41A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(26)</td>
<td>1.3883(17)</td>
<td>C(41)-H(41B)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.3976(18)</td>
<td>C(42)-C(43)</td>
<td>1.537(3)</td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.3793(18)</td>
<td>C(42)-H(42A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(22)-H(22)</td>
<td>0.9500</td>
<td>C(42)-H(42B)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.3960(18)</td>
<td>C(43)-C(44)</td>
<td>1.536(3)</td>
<td></td>
</tr>
<tr>
<td>C(23)-H(23)</td>
<td>0.9500</td>
<td>C(43)-H(43A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(24)-O(3)</td>
<td>1.3556(15)</td>
<td>C(44)-C(45)</td>
<td>1.491(3)</td>
<td></td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.3946(18)</td>
<td>C(44)-H(44A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(25)-C(26)</td>
<td>1.3942(17)</td>
<td>C(44)-H(44B)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(25)-H(25)</td>
<td>0.9500</td>
<td>C(45)-C(46)</td>
<td>1.551(3)</td>
<td></td>
</tr>
<tr>
<td>C(26)-H(26)</td>
<td>0.9500</td>
<td>C(45)-H(45A)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(31)-N(2)</td>
<td>1.4637(19)</td>
<td>C(45)-H(45B)</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>C(31)-C(32)</td>
<td>1.517(2)</td>
<td>C(46)-C(47)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(31)-H(31A)</td>
<td>0.9900</td>
<td>C(46)-H(46A)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(31)-H(31B)</td>
<td>0.9900</td>
<td>C(46)-H(46B)</td>
<td>0.9800</td>
<td></td>
</tr>
<tr>
<td>C(32)-C(33)</td>
<td>1.523(2)</td>
<td>N(1)-N(2)</td>
<td>1.3272(16)</td>
<td></td>
</tr>
<tr>
<td>C(32)-H(32A)</td>
<td>0.9900</td>
<td>N(2)-N(3)</td>
<td>1.3125(19)</td>
<td></td>
</tr>
</tbody>
</table>
N(3)-N(4) 1.3234(18)

N(1)-C(1)-N(4) 112.17(12) O(3)-C(24)-C(23) 114.70(12)
N(1)-C(1)-C(11) 123.90(11) C(25)-C(24)-C(23) 120.42(12)
N(4)-C(1)-C(11) 123.92(12) C(26)-C(25)-C(24) 119.08(12)
O(2)-C(2)-O(1) 122.38(12) C(26)-C(25)-H(25) 120.5
O(2)-C(2)-C(21) 124.90(12) C(24)-C(25)-H(25) 120.5
O(1)-C(2)-C(21) 112.71(11) C(21)-C(26)-C(25) 120.84(12)
C(16)-C(11)-C(12) 119.73(12) C(21)-C(26)-H(26) 119.6
C(16)-C(11)-C(1) 120.18(11) C(25)-C(26)-H(26) 119.6
C(12)-C(11)-C(1) 120.08(12) N(2)-C(31)-C(32) 112.21(12)
C(13)-C(12)-C(11) 120.24(12) N(2)-C(31)-H(31A) 109.2
C(13)-C(12)-H(12) 119.9 C(32)-C(31)-H(31A) 109.2
C(11)-C(12)-H(12) 119.9 N(2)-C(31)-H(31B) 109.2
C(14)-C(13)-C(12) 118.99(12) C(32)-C(31)-H(31B) 109.2
C(14)-C(13)-H(13) 120.5 H(31A)-C(31)-H(31B) 107.9
C(12)-C(13)-H(13) 120.5 C(31)-C(32)-C(33) 114.45(14)
C(15)-C(14)-C(13) 121.74(12) C(31)-C(32)-H(32A) 108.6
C(15)-C(14)-O(1) 118.66(12) C(33)-C(32)-H(32A) 108.6
C(13)-C(14)-O(1) 119.57(12) C(31)-C(32)-H(32B) 108.6
C(14)-C(15)-C(16) 119.06(13) C(33)-C(32)-H(32B) 108.6
C(14)-C(15)-H(15) 120.5 H(32A)-C(32)-H(32B) 107.6
C(16)-C(15)-H(15) 120.5 C(34)-C(33)-C(32) 112.43(13)
C(15)-C(16)-C(11) 120.25(12) C(34)-C(33)-H(33A) 109.1
C(15)-C(16)-H(16) 119.9 C(32)-C(33)-H(33A) 109.1
C(11)-C(16)-H(16) 119.9 C(34)-C(33)-H(33B) 109.1
C(26)-C(21)-C(22) 119.28(11) C(32)-C(33)-H(33B) 109.1
C(26)-C(21)-C(2) 123.39(11) H(33A)-C(33)-H(33B) 107.9
C(22)-C(21)-C(2) 117.33(11) C(35)-C(34)-C(33) 113.99(13)
C(23)-C(22)-C(21) 120.62(12) C(35)-C(34)-H(34A) 108.8
C(23)-C(22)-H(22) 119.7 C(33)-C(34)-H(34A) 108.8
C(21)-C(22)-H(22) 119.7 C(35)-C(34)-H(34B) 108.8
C(22)-C(23)-C(24) 119.75(12) C(33)-C(34)-H(34B) 108.8
C(22)-C(23)-H(23) 120.1 H(34A)-C(34)-H(34B) 107.7
C(24)-C(23)-H(23) 120.1 C(34)-C(35)-C(36) 113.13(15)
O(3)-C(24)-C(25) 124.88(12) C(34)-C(35)-H(35A) 109.0
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(36)-C(35)-H(35A)</td>
<td>109.0</td>
<td>H(34A)-C(43)-H(43B)</td>
<td>107.5</td>
</tr>
<tr>
<td>C(34)-C(35)-H(35B)</td>
<td>109.0</td>
<td>C(45)-C(44)-C(43)</td>
<td>114.25(18)</td>
</tr>
<tr>
<td>C(36)-C(35)-H(35B)</td>
<td>109.0</td>
<td>C(45)-C(44)-H(44A)</td>
<td>108.7</td>
</tr>
<tr>
<td>H(35A)-C(35)-H(35B)</td>
<td>107.8</td>
<td>C(43)-C(44)-H(44A)</td>
<td>108.7</td>
</tr>
<tr>
<td>C(35)-C(36)-H(36A)</td>
<td>109.5</td>
<td>C(45)-C(44)-H(44B)</td>
<td>108.7</td>
</tr>
<tr>
<td>C(35)-C(36)-H(36B)</td>
<td>109.5</td>
<td>C(43)-C(44)-H(44B)</td>
<td>108.7</td>
</tr>
<tr>
<td>H(36A)-C(36)-H(36B)</td>
<td>109.5</td>
<td>H(44A)-C(44)-H(44B)</td>
<td>107.6</td>
</tr>
<tr>
<td>C(35)-C(36)-H(36C)</td>
<td>109.5</td>
<td>C(45)-C(46)-C(46)</td>
<td>110.7(2)</td>
</tr>
<tr>
<td>H(36A)-C(36)-H(36C)</td>
<td>109.5</td>
<td>C(44)-C(45)-H(45A)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(36B)-C(36)-H(36C)</td>
<td>109.5</td>
<td>C(46)-C(45)-H(45A)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(3)-C(41)-C(42)</td>
<td>106.07(12)</td>
<td>C(44)-C(45)-H(45B)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(3)-C(41)-H(41A)</td>
<td>110.5</td>
<td>C(46)-C(45)-H(45B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(42)-C(41)-H(41A)</td>
<td>110.5</td>
<td>H(45A)-C(45)-H(45B)</td>
<td>108.1</td>
</tr>
<tr>
<td>O(3)-C(41)-H(41B)</td>
<td>110.5</td>
<td>C(45)-C(46)-H(46A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(42)-C(41)-H(41B)</td>
<td>110.5</td>
<td>C(45)-C(46)-H(46B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(41A)-C(41)-H(41B)</td>
<td>108.7</td>
<td>H(46A)-C(46)-H(46B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(41)-C(42)-C(43)</td>
<td>113.35(13)</td>
<td>C(45)-C(46)-H(46C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(41)-C(42)-H(42A)</td>
<td>108.9</td>
<td>H(46A)-C(46)-H(46C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(43)-C(42)-H(42A)</td>
<td>108.9</td>
<td>H(46B)-C(46)-H(46C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(41)-C(42)-H(42B)</td>
<td>108.9</td>
<td>N(2)-N(1)-C(1)</td>
<td>101.67(11)</td>
</tr>
<tr>
<td>C(43)-C(42)-H(42B)</td>
<td>108.9</td>
<td>N(3)-N(2)-N(1)</td>
<td>113.98(12)</td>
</tr>
<tr>
<td>H(42A)-C(42)-H(42B)</td>
<td>107.7</td>
<td>N(3)-N(2)-C(31)</td>
<td>123.03(12)</td>
</tr>
<tr>
<td>C(44)-C(43)-C(42)</td>
<td>115.40(15)</td>
<td>N(1)-N(2)-C(31)</td>
<td>122.97(13)</td>
</tr>
<tr>
<td>C(44)-C(43)-H(43A)</td>
<td>108.4</td>
<td>N(2)-N(3)-N(4)</td>
<td>106.44(11)</td>
</tr>
<tr>
<td>C(42)-C(43)-H(43A)</td>
<td>108.4</td>
<td>N(3)-N(4)-C(1)</td>
<td>105.74(12)</td>
</tr>
<tr>
<td>C(44)-C(43)-H(43B)</td>
<td>108.4</td>
<td>C(2)-O(1)-C(14)</td>
<td>115.73(10)</td>
</tr>
<tr>
<td>C(42)-C(43)-H(43B)</td>
<td>108.4</td>
<td>C(24)-O(3)-C(41)</td>
<td>119.26(11)</td>
</tr>
</tbody>
</table>
Table 3. Torsion angles [°] for 5a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Torsion Angle [°]</th>
<th>Bond</th>
<th>Torsion Angle [°]</th>
<th>Bond</th>
<th>Torsion Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-C(1)-C(11)-C(16)</td>
<td>167.29(14)</td>
<td>C(24)-C(25)-C(26)-C(21)</td>
<td>0.6(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(4)-C(1)-C(11)-C(16)</td>
<td>-11.5(2)</td>
<td>N(2)-C(31)-C(32)-C(33)</td>
<td>61.06(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)-C(1)-C(11)-C(12)</td>
<td>-11.6(2)</td>
<td>C(31)-C(32)-C(33)-C(34)</td>
<td>174.93(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(4)-C(1)-C(11)-C(12)</td>
<td>169.59(14)</td>
<td>C(32)-C(33)-C(34)-C(35)</td>
<td>177.46(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(16)-C(11)-C(12)-C(13)</td>
<td>0.7(2)</td>
<td>C(33)-C(34)-C(35)-C(36)</td>
<td>178.00(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(11)-C(12)-C(13)</td>
<td>179.63(13)</td>
<td>O(3)-C(41)-C(42)-C(43)</td>
<td>-64.74(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)-C(14)</td>
<td>0.3(2)</td>
<td>C(41)-C(42)-C(43)-C(44)</td>
<td>168.18(16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-C(15)</td>
<td>0.3(2)</td>
<td>C(42)-C(43)-C(44)-C(45)</td>
<td>61.7(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-O(1)</td>
<td>177.62(12)</td>
<td>C(43)-C(44)-C(45)-C(46)</td>
<td>177.01(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)-C(16)</td>
<td>0.4(2)</td>
<td>N(4)-C(1)-N(1)-N(2)</td>
<td>0.44(16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-C(14)-C(15)-C(16)</td>
<td>-177.44(13)</td>
<td>C(11)-C(1)-N(1)-N(2)</td>
<td>-178.45(12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)-C(16)-C(11)</td>
<td>-0.1(2)</td>
<td>C(1)-N(1)-N(2)-N(3)</td>
<td>-0.34(16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(11)-C(16)-C(15)</td>
<td>-0.5(2)</td>
<td>C(1)-N(1)-N(2)-C(31)</td>
<td>-178.57(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(11)-C(16)-C(15)</td>
<td>-179.43(13)</td>
<td>C(32)-C(31)-N(2)-N(3)</td>
<td>-104.58(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-C(2)-C(21)-C(26)</td>
<td>-177.91(15)</td>
<td>C(32)-C(31)-N(2)-N(1)</td>
<td>73.50(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-C(2)-C(21)-C(26)</td>
<td>3.31(19)</td>
<td>N(1)-N(2)-N(3)-N(4)</td>
<td>0.12(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-C(2)-C(21)-C(22)</td>
<td>2.9(2)</td>
<td>C(31)-N(2)-N(3)-N(4)</td>
<td>178.35(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-C(2)-C(21)-C(22)</td>
<td>-175.89(12)</td>
<td>N(2)-N(3)-N(4)-C(1)</td>
<td>0.15(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(26)-C(21)-C(22)-C(23)</td>
<td>-0.3(2)</td>
<td>N(1)-C(1)-N(4)-N(3)</td>
<td>-0.39(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(21)-C(22)-C(23)</td>
<td>178.91(13)</td>
<td>C(11)-C(1)-N(4)-N(3)</td>
<td>178.50(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)-C(23)-C(24)</td>
<td>0.6(2)</td>
<td>O(2)-C(2)-O(1)-C(14)</td>
<td>-0.6(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)-C(24)-O(3)</td>
<td>179.57(12)</td>
<td>C(21)-C(2)-O(1)-C(14)</td>
<td>178.23(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)-C(24)-C(25)</td>
<td>-0.3(2)</td>
<td>C(15)-C(14)-O(1)-C(2)</td>
<td>-100.88(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)-C(24)-C(25)-C(26)</td>
<td>179.87(12)</td>
<td>C(13)-C(14)-O(1)-C(2)</td>
<td>81.21(16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)-C(24)-C(25)-C(26)</td>
<td>-0.3(2)</td>
<td>C(25)-C(24)-O(3)-C(41)</td>
<td>1.9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(21)-C(26)-C(25)</td>
<td>-0.3(2)</td>
<td>C(23)-C(24)-O(3)-C(41)</td>
<td>-177.88(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(21)-C(26)-C(25)</td>
<td>-179.44(12)</td>
<td>C(42)-C(41)-O(3)-C(24)</td>
<td>178.29(12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2. Compound 5f
Table 4. Crystal data and structure refinement for 5f.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{32}H_{46}N_{4}O_{3}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>534.73</td>
</tr>
<tr>
<td>Temperature</td>
<td>190(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 6.1964(4) Å</td>
</tr>
<tr>
<td></td>
<td>b = 7.3745(4) Å</td>
</tr>
<tr>
<td></td>
<td>c = 33.1004(18) Å</td>
</tr>
<tr>
<td></td>
<td>α = 93.630(3)°</td>
</tr>
<tr>
<td></td>
<td>β = 94.782(3)°</td>
</tr>
<tr>
<td></td>
<td>γ = 95.576(3)°</td>
</tr>
<tr>
<td>Volume</td>
<td>1496.24(15) Å</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.187 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.077 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>580</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.38 x 0.38 x 0.10 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.32 to 31.85°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-4 ≤ h ≤ 9, -10 ≤ k ≤ 9, -48 ≤ l ≤ 48</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>17024</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>10061 [R(int) = 0.0328]</td>
</tr>
<tr>
<td>Completeness to theta = 31.85°</td>
<td>98.1 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>10061 / 3 / 707</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.057</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.0661, wR2 = 0.1720</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0790, wR2 = 0.1794</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.431 and -0.301 e.Å⁻³</td>
</tr>
</tbody>
</table>
Table 5. Bond lengths [Å] and angles [°] for 5f.

<table>
<thead>
<tr>
<th>Molecule 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-N(2)</td>
</tr>
<tr>
<td>N(2)-N(3)</td>
</tr>
<tr>
<td>N(3)-N(4)</td>
</tr>
<tr>
<td>C(1)-N(1)</td>
</tr>
<tr>
<td>C(1)-N(4)</td>
</tr>
<tr>
<td>C(1)-C(11)</td>
</tr>
<tr>
<td>C(2)-O(2)</td>
</tr>
<tr>
<td>C(2)-C(21)</td>
</tr>
<tr>
<td>C(2)-C(11)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
</tr>
<tr>
<td>C(11)-C(16)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
</tr>
<tr>
<td>C(13)-H(13)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
</tr>
<tr>
<td>C(14)-O(1)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
</tr>
<tr>
<td>C(15)-H(15)</td>
</tr>
<tr>
<td>C(16)-H(16)</td>
</tr>
<tr>
<td>C(21)-C(26)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
</tr>
<tr>
<td>C(22)-H(22)</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
</tr>
<tr>
<td>C(23)-H(23)</td>
</tr>
<tr>
<td>C(24)-O(3)</td>
</tr>
<tr>
<td>C(24)-C(25)</td>
</tr>
<tr>
<td>C(25)-C(26)</td>
</tr>
<tr>
<td>C(25)-H(25)</td>
</tr>
<tr>
<td>C(26)-H(26)</td>
</tr>
<tr>
<td>C(31)-N(2)</td>
</tr>
<tr>
<td>Bond</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>C(42)-H(42A)</td>
</tr>
<tr>
<td>C(42)-H(42B)</td>
</tr>
<tr>
<td>C(43)-C(44)</td>
</tr>
<tr>
<td>C(43)-H(43A)</td>
</tr>
<tr>
<td>C(43)-H(43B)</td>
</tr>
<tr>
<td>C(44)-C(45)</td>
</tr>
<tr>
<td>C(44)-H(44A)</td>
</tr>
<tr>
<td>C(44)-H(44B)</td>
</tr>
<tr>
<td>C(45)-C(46)</td>
</tr>
<tr>
<td>C(45)-H(45A)</td>
</tr>
<tr>
<td>C(45)-H(45B)</td>
</tr>
<tr>
<td>C(46)-C(47)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
C(25)-C(26)-H(26) 119.7 C(37)-C(36)-H(36B) 109.1
C(21)-C(26)-H(26) 119.7 H(36A)-C(36)-H(36B) 107.8
N(2)-C(31)-C(32) 113.2(3) C(38)-C(37)-C(36) 113.1(4)
N(2)-C(31)-H(31A) 108.9 C(38)-C(37)-H(37A) 109.0
C(32)-C(31)-H(31A) 108.9 C(36)-C(37)-H(37A) 109.0
N(2)-C(31)-H(31B) 108.9 C(38)-C(37)-H(37B) 109.0
C(32)-C(31)-H(31B) 108.9 C(36)-C(37)-H(37B) 109.0
H(31A)-C(31)-H(31B) 107.8 H(37A)-C(37)-H(37B) 107.8
C(31)-C(32)-C(33) 109.5(3) C(37)-C(38)-C(39) 112.5(4)
C(31)-C(32)-H(32A) 109.8 C(37)-C(38)-H(38A) 109.1
C(33)-C(32)-H(32A) 109.8 C(39)-C(38)-H(38A) 109.1
C(31)-C(32)-H(32B) 109.8 C(37)-C(38)-H(38B) 109.1
C(33)-C(32)-H(32B) 109.8 C(39)-C(38)-H(38B) 109.1
H(32A)-C(32)-H(32B) 108.2 H(38A)-C(38)-H(38B) 107.8
C(34)-C(33)-C(32) 113.1(3) C(38)-C(39)-H(39A) 109.5
C(34)-C(33)-H(33A) 109.0 C(38)-C(39)-H(39B) 109.5
C(32)-C(33)-H(33A) 109.0 H(39A)-C(39)-H(39B) 109.5
C(34)-C(33)-H(33B) 109.0 H(39A)-C(39)-H(39C) 109.5
C(32)-C(33)-H(33B) 109.0 H(39B)-C(39)-H(39C) 109.5
H(33A)-C(33)-H(33B) 107.8 H(39B)-C(39)-H(39C) 109.5
C(35)-C(34)-C(33) 112.1(3) O(3)-C(41)-C(42) 104.3(2)
C(35)-C(34)-H(34A) 109.2 O(3)-C(41)-H(41A) 110.9
C(33)-C(34)-H(34A) 109.2 C(42)-C(41)-H(41A) 110.9
C(35)-C(34)-H(34B) 109.2 O(3)-C(41)-H(41B) 110.9
C(33)-C(34)-H(34B) 109.2 C(42)-C(41)-H(41B) 110.9
H(34A)-C(34)-H(34B) 107.9 H(41A)-C(41)-H(41B) 108.9
C(36)-C(35)-C(34) 113.4(3) C(41)-C(42)-C(43) 114.3(3)
C(36)-C(35)-H(35A) 108.9 C(41)-C(42)-H(42A) 108.7
C(34)-C(35)-H(35A) 108.9 C(43)-C(42)-H(42A) 108.7
C(36)-C(35)-H(35B) 108.9 C(41)-C(42)-H(42B) 108.7
C(34)-C(35)-H(35B) 108.9 C(43)-C(42)-H(42B) 108.7
H(35A)-C(35)-H(35B) 107.7 H(42A)-C(42)-H(42B) 107.6
C(35)-C(36)-C(37) 112.5(3) C(44)-C(43)-C(42) 110.8(3)
C(35)-C(36)-H(36A) 109.1 C(44)-C(43)-H(43A) 109.5
C(37)-C(36)-H(36A) 109.1 C(42)-C(43)-H(43A) 109.5
C(35)-C(36)-H(36B) 109.1 C(44)-C(43)-H(43B) 109.5
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(42)-C(43)-H(43B)</td>
<td>109.5</td>
<td>H(46A)-C(46)-H(46B)</td>
<td>107.7</td>
</tr>
<tr>
<td>H(43A)-C(43)-H(43B)</td>
<td>108.1</td>
<td>C(48)-C(47)-C(46)</td>
<td>113.5(3)</td>
</tr>
<tr>
<td>C(43)-C(44)-C(45)</td>
<td>114.2(3)</td>
<td>C(48)-C(47)-H(47A)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(43)-C(44)-H(44A)</td>
<td>108.7</td>
<td>C(46)-C(47)-H(47A)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(45)-C(44)-H(44A)</td>
<td>108.7</td>
<td>C(48)-C(47)-H(47B)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(43)-C(44)-H(44B)</td>
<td>108.7</td>
<td>C(46)-C(47)-H(47B)</td>
<td>108.9</td>
</tr>
<tr>
<td>H(44A)-C(44)-H(44B)</td>
<td>107.6</td>
<td>H(47A)-C(47)-H(47B)</td>
<td>107.7</td>
</tr>
<tr>
<td>H(44A)-C(45)-H(44B)</td>
<td>112.9(3)</td>
<td>C(47)-C(48)-C(49)</td>
<td>113.5(4)</td>
</tr>
<tr>
<td>C(46)-C(45)-H(45A)</td>
<td>109.0</td>
<td>C(47)-C(48)-H(48A)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(44)-C(45)-H(45A)</td>
<td>109.0</td>
<td>C(49)-C(48)-H(48A)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(46)-C(45)-H(45B)</td>
<td>109.0</td>
<td>C(49)-C(48)-H(48B)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(44)-C(45)-H(45B)</td>
<td>109.0</td>
<td>H(48A)-C(48)-H(48B)</td>
<td>107.7</td>
</tr>
<tr>
<td>H(45A)-C(45)-H(45B)</td>
<td>107.8</td>
<td>C(48)-C(49)-H(49A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(45)-C(46)-C(47)</td>
<td>113.6(3)</td>
<td>C(48)-C(49)-H(49B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(45)-C(46)-H(46A)</td>
<td>108.8</td>
<td>H(49A)-C(49)-H(49B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(47)-C(46)-H(46A)</td>
<td>108.8</td>
<td>C(49)-C(49)-H(49C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(45)-C(46)-H(46B)</td>
<td>108.8</td>
<td>H(49B)-C(49)-H(49C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(47)-C(46)-H(46B)</td>
<td>108.8</td>
<td>H(49B)-C(49)-H(49C)</td>
<td>109.5</td>
</tr>
</tbody>
</table>

Molecule 2

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(51)-N(51)</td>
<td>1.329(4)</td>
<td>C(65)-C(66)</td>
<td>1.384(5)</td>
</tr>
<tr>
<td>C(51)-N(54)</td>
<td>1.360(4)</td>
<td>C(65)-H(65)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(51)-C(61)</td>
<td>1.463(4)</td>
<td>C(66)-H(66)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(52)-O(52)</td>
<td>1.199(4)</td>
<td>C(71)-C(76)</td>
<td>1.386(4)</td>
</tr>
<tr>
<td>C(52)-O(51)</td>
<td>1.359(3)</td>
<td>C(71)-C(72)</td>
<td>1.396(4)</td>
</tr>
<tr>
<td>C(52)-C(71)</td>
<td>1.483(4)</td>
<td>C(72)-C(73)</td>
<td>1.389(4)</td>
</tr>
<tr>
<td>C(61)-C(62)</td>
<td>1.391(4)</td>
<td>C(72)-H(72)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(61)-C(66)</td>
<td>1.402(4)</td>
<td>C(73)-C(74)</td>
<td>1.395(4)</td>
</tr>
<tr>
<td>C(62)-C(63)</td>
<td>1.387(5)</td>
<td>C(73)-H(73)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(62)-H(62)</td>
<td>0.9500</td>
<td>C(74)-O(53)</td>
<td>1.367(4)</td>
</tr>
<tr>
<td>C(63)-C(64)</td>
<td>1.379(4)</td>
<td>C(74)-C(75)</td>
<td>1.393(4)</td>
</tr>
<tr>
<td>C(63)-H(63)</td>
<td>0.9500</td>
<td>C(75)-C(76)</td>
<td>1.386(4)</td>
</tr>
<tr>
<td>C(64)-C(65)</td>
<td>1.392(4)</td>
<td>C(75)-H(75)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(64)-O(51)</td>
<td>1.403(4)</td>
<td>C(76)-H(76)</td>
<td>0.9500</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (deg)</td>
<td>Bond</td>
<td>Angle (deg)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C(2)-O(1)-C(14)</td>
<td>115.4(2)</td>
<td>C(72)-C(71)-C(52)</td>
<td>116.4(3)</td>
</tr>
<tr>
<td>C(24)-O(3)-C(41)</td>
<td>120.3(2)</td>
<td>C(73)-C(72)-C(71)</td>
<td>120.9(3)</td>
</tr>
<tr>
<td>C(52)-O(51)-C(64)</td>
<td>115.8(2)</td>
<td>C(73)-C(72)-H(72)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(74)-O(53)-C(91)</td>
<td>117.5(2)</td>
<td>C(71)-C(72)-H(72)</td>
<td>119.6</td>
</tr>
<tr>
<td>N(52)-N(51)-C(51)</td>
<td>102.4(3)</td>
<td>C(72)-C(73)-C(74)</td>
<td>118.9(3)</td>
</tr>
<tr>
<td>N(53)-N(52)-N(51)</td>
<td>114.1(3)</td>
<td>C(72)-C(73)-H(73)</td>
<td>120.5</td>
</tr>
<tr>
<td>N(53)-N(52)-C(81)</td>
<td>124.5(3)</td>
<td>C(74)-C(73)-H(73)</td>
<td>120.5</td>
</tr>
<tr>
<td>N(51)-N(52)-C(81)</td>
<td>121.3(3)</td>
<td>O(53)-C(74)-C(75)</td>
<td>115.8(3)</td>
</tr>
<tr>
<td>N(52)-N(53)-N(54)</td>
<td>105.9(3)</td>
<td>O(53)-C(74)-C(73)</td>
<td>124.0(3)</td>
</tr>
<tr>
<td>N(53)-N(54)-C(51)</td>
<td>105.7(3)</td>
<td>C(75)-C(74)-C(73)</td>
<td>120.2(3)</td>
</tr>
<tr>
<td>N(51)-C(51)-N(54)</td>
<td>111.9(3)</td>
<td>C(76)-C(75)-C(74)</td>
<td>120.4(3)</td>
</tr>
<tr>
<td>N(51)-C(51)-C(61)</td>
<td>123.1(3)</td>
<td>C(76)-C(75)-H(75)</td>
<td>119.8</td>
</tr>
<tr>
<td>N(54)-C(51)-C(61)</td>
<td>125.1(3)</td>
<td>C(74)-C(75)-H(75)</td>
<td>119.8</td>
</tr>
<tr>
<td>O(52)-C(52)-O(51)</td>
<td>123.4(3)</td>
<td>C(71)-C(76)-C(75)</td>
<td>119.9(3)</td>
</tr>
<tr>
<td>O(52)-C(52)-C(71)</td>
<td>124.2(3)</td>
<td>C(71)-C(76)-H(76)</td>
<td>120.1</td>
</tr>
<tr>
<td>O(51)-C(52)-C(71)</td>
<td>112.4(2)</td>
<td>C(75)-C(76)-H(76)</td>
<td>120.1</td>
</tr>
<tr>
<td>C(62)-C(61)-C(66)</td>
<td>119.5(3)</td>
<td>N(52)-C(81)-C(82)</td>
<td>114.3(3)</td>
</tr>
<tr>
<td>C(62)-C(61)-C(51)</td>
<td>118.9(3)</td>
<td>N(52)-C(81)-H(81A)</td>
<td>108.7</td>
</tr>
<tr>
<td>C(66)-C(61)-C(51)</td>
<td>121.5(3)</td>
<td>C(82)-C(81)-H(81A)</td>
<td>108.7</td>
</tr>
<tr>
<td>C(63)-C(62)-C(61)</td>
<td>120.5(3)</td>
<td>N(52)-C(81)-H(81B)</td>
<td>108.7</td>
</tr>
<tr>
<td>C(63)-C(62)-H(62)</td>
<td>119.7</td>
<td>C(82)-C(81)-H(81B)</td>
<td>108.7</td>
</tr>
<tr>
<td>C(61)-C(62)-H(62)</td>
<td>119.7</td>
<td>H(81A)-C(81)-H(81B)</td>
<td>107.6</td>
</tr>
<tr>
<td>C(64)-C(63)-C(62)</td>
<td>118.9(3)</td>
<td>C(81)-C(82)-C(83)</td>
<td>109.2(3)</td>
</tr>
<tr>
<td>C(64)-C(63)-H(63)</td>
<td>120.6</td>
<td>C(81)-C(82)-H(82A)</td>
<td>109.8</td>
</tr>
<tr>
<td>C(62)-C(63)-H(63)</td>
<td>120.6</td>
<td>C(83)-C(82)-H(82A)</td>
<td>109.8</td>
</tr>
<tr>
<td>C(63)-C(64)-C(65)</td>
<td>122.0(3)</td>
<td>C(81)-C(82)-H(82B)</td>
<td>109.8</td>
</tr>
<tr>
<td>C(63)-C(64)-O(51)</td>
<td>118.2(3)</td>
<td>C(83)-C(82)-H(82B)</td>
<td>109.8</td>
</tr>
<tr>
<td>C(65)-C(64)-O(51)</td>
<td>119.8(3)</td>
<td>H(82A)-C(82)-H(82B)</td>
<td>108.3</td>
</tr>
<tr>
<td>C(66)-C(65)-C(64)</td>
<td>118.6(3)</td>
<td>C(82)-C(83)-C(84)</td>
<td>113.8(3)</td>
</tr>
<tr>
<td>C(66)-C(65)-H(65)</td>
<td>120.7</td>
<td>C(82)-C(83)-H(83A)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(64)-C(65)-H(65)</td>
<td>120.7</td>
<td>C(84)-C(83)-H(83A)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(65)-C(66)-C(61)</td>
<td>120.4(3)</td>
<td>C(82)-C(83)-H(83B)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(65)-C(66)-H(66)</td>
<td>119.8</td>
<td>C(84)-C(83)-H(83B)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(61)-C(66)-H(66)</td>
<td>119.8</td>
<td>H(83A)-C(83)-H(83B)</td>
<td>107.7</td>
</tr>
<tr>
<td>C(76)-C(71)-C(72)</td>
<td>119.7(3)</td>
<td>C(85)-C(84)-C(83)</td>
<td>112.6(3)</td>
</tr>
<tr>
<td>C(76)-C(71)-C(52)</td>
<td>123.9(3)</td>
<td>C(85)-C(84)-H(84A)</td>
<td>109.1</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Bond</td>
<td>Angle</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>C(83)-C(84)-H(84A)</td>
<td>109.1</td>
<td>C(92)-C(91)-H(91A)</td>
<td>110.1</td>
</tr>
<tr>
<td>C(85)-C(84)-H(84B)</td>
<td>109.1</td>
<td>O(53)-C(91)-H(91B)</td>
<td>110.1</td>
</tr>
<tr>
<td>C(83)-C(84)-H(84B)</td>
<td>109.1</td>
<td>C(92)-C(91)-H(91B)</td>
<td>110.1</td>
</tr>
<tr>
<td>H(84A)-C(84)-H(84B)</td>
<td>107.8</td>
<td>H(91A)-C(91)-H(91B)</td>
<td>108.4</td>
</tr>
<tr>
<td>C(86)-C(85)-C(84)</td>
<td>114.4(3)</td>
<td>C(91)-C(92)-C(93)</td>
<td>113.6(3)</td>
</tr>
<tr>
<td>C(86)-C(85)-H(85A)</td>
<td>108.6</td>
<td>C(91)-C(92)-H(92A)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(84)-C(85)-H(85A)</td>
<td>108.6</td>
<td>C(93)-C(92)-H(92A)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(86)-C(85)-H(85B)</td>
<td>108.6</td>
<td>C(91)-C(92)-H(92B)</td>
<td>108.8</td>
</tr>
<tr>
<td>C(84)-C(85)-H(85B)</td>
<td>108.6</td>
<td>C(93)-C(92)-H(92B)</td>
<td>108.8</td>
</tr>
<tr>
<td>H(85A)-C(85)-H(85B)</td>
<td>107.6</td>
<td>H(92A)-C(92)-H(92B)</td>
<td>107.7</td>
</tr>
<tr>
<td>C(87)-C(86)-C(85)</td>
<td>113.6(3)</td>
<td>C(92)-C(93)-C(94)</td>
<td>113.2(3)</td>
</tr>
<tr>
<td>C(87)-C(86)-H(86A)</td>
<td>108.9</td>
<td>C(92)-C(93)-H(93A)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(85)-C(86)-H(86A)</td>
<td>108.9</td>
<td>C(94)-C(93)-H(93A)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(87)-C(86)-H(86B)</td>
<td>108.9</td>
<td>C(92)-C(93)-H(93B)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(85)-C(86)-H(86B)</td>
<td>108.9</td>
<td>C(94)-C(93)-H(93B)</td>
<td>108.9</td>
</tr>
<tr>
<td>H(86A)-C(86)-H(86B)</td>
<td>107.7</td>
<td>H(93A)-C(93)-H(93B)</td>
<td>107.8</td>
</tr>
<tr>
<td>C(86)-C(87)-C(88)</td>
<td>114.2(3)</td>
<td>C(93)-C(94)-C(95)</td>
<td>114.6(3)</td>
</tr>
<tr>
<td>C(86)-C(87)-H(87A)</td>
<td>108.7</td>
<td>C(93)-C(94)-H(94A)</td>
<td>108.6</td>
</tr>
<tr>
<td>C(88)-C(87)-H(87A)</td>
<td>108.7</td>
<td>C(95)-C(94)-H(94A)</td>
<td>108.6</td>
</tr>
<tr>
<td>C(86)-C(87)-H(87B)</td>
<td>108.7</td>
<td>C(93)-C(94)-H(94B)</td>
<td>108.6</td>
</tr>
<tr>
<td>C(88)-C(87)-H(87B)</td>
<td>108.7</td>
<td>C(95)-C(94)-H(94B)</td>
<td>108.6</td>
</tr>
<tr>
<td>H(87A)-C(87)-H(87B)</td>
<td>107.6</td>
<td>H(94A)-C(94)-H(94B)</td>
<td>107.6</td>
</tr>
<tr>
<td>C(89)-C(88)-C(87)</td>
<td>113.4(4)</td>
<td>C(96)-C(95)-C(94)</td>
<td>113.4(3)</td>
</tr>
<tr>
<td>C(89)-C(88)-H(88A)</td>
<td>108.9</td>
<td>C(96)-C(95)-H(95A)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(87)-C(88)-H(88A)</td>
<td>108.9</td>
<td>C(94)-C(95)-H(95A)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(89)-C(88)-H(88B)</td>
<td>108.9</td>
<td>C(96)-C(95)-H(95B)</td>
<td>108.9</td>
</tr>
<tr>
<td>C(87)-C(88)-H(88B)</td>
<td>108.9</td>
<td>C(94)-C(95)-H(95B)</td>
<td>108.9</td>
</tr>
<tr>
<td>H(88A)-C(88)-H(88B)</td>
<td>107.7</td>
<td>H(95A)-C(95)-H(95B)</td>
<td>107.7</td>
</tr>
<tr>
<td>C(88)-C(89)-H(89A)</td>
<td>109.5</td>
<td>C(95)-C(96)-C(97)</td>
<td>114.5(3)</td>
</tr>
<tr>
<td>C(88)-C(89)-H(89B)</td>
<td>109.5</td>
<td>C(95)-C(96)-H(96A)</td>
<td>108.6</td>
</tr>
<tr>
<td>H(89A)-C(89)-H(89B)</td>
<td>109.5</td>
<td>C(97)-C(96)-H(96A)</td>
<td>108.6</td>
</tr>
<tr>
<td>C(88)-C(89)-H(89C)</td>
<td>109.5</td>
<td>C(95)-C(96)-H(96B)</td>
<td>108.6</td>
</tr>
<tr>
<td>H(89A)-C(89)-H(89C)</td>
<td>109.5</td>
<td>C(97)-C(96)-H(96B)</td>
<td>108.6</td>
</tr>
<tr>
<td>H(89B)-C(89)-H(89C)</td>
<td>109.5</td>
<td>H(96A)-C(96)-H(96B)</td>
<td>107.6</td>
</tr>
<tr>
<td>O(53)-C(91)-C(92)</td>
<td>108.2(3)</td>
<td>C(98)-C(97)-C(96)</td>
<td>113.6(3)</td>
</tr>
<tr>
<td>O(53)-C(91)-H(91A)</td>
<td>110.1</td>
<td>C(98)-C(97)-H(97A)</td>
<td>108.9</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(96)-C(97)-H(97A)</td>
<td>108.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(97)-C(98)-H(98A)</td>
<td>108.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(97)-C(98)-C(99)</td>
<td>113.3(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(98)-C(99)-H(99A)</td>
<td>109.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(98)-C(99)-H(99B)</td>
<td>109.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(98)-C(99)-H(99C)</td>
<td>109.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(97A)-C(97)-H(97B)</td>
<td>107.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(97A)-C(97)-H(97B)</td>
<td>107.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(98A)-C(98)-H(98B)</td>
<td>107.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(98A)-C(98)-H(98B)</td>
<td>107.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(99A)-C(99)-H(99B)</td>
<td>109.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(99A)-C(99)-H(99B)</td>
<td>109.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(99B)-C(99)-H(99B)</td>
<td>109.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(99B)-C(99)-H(99B)</td>
<td>109.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Torsion angles [°] for 5f.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Value 1</th>
<th>Bond</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2)-C(2)-O(1)-C(14)</td>
<td>1.4(5)</td>
<td>O(2)-C(2)-C(21)-C(22)</td>
<td>164.4(4)</td>
</tr>
<tr>
<td>C(21)-C(2)-O(1)-C(14)</td>
<td>-177.9(3)</td>
<td>O(1)-C(2)-C(21)-C(22)</td>
<td>-16.4(5)</td>
</tr>
<tr>
<td>C(13)-C(14)-O(1)-C(2)</td>
<td>-110.7(3)</td>
<td>C(26)-C(21)-C(22)-C(23)</td>
<td>-0.2(5)</td>
</tr>
<tr>
<td>C(15)-C(14)-O(1)-C(2)</td>
<td>72.2(4)</td>
<td>C(2)-C(21)-C(22)-C(23)</td>
<td>179.2(3)</td>
</tr>
<tr>
<td>C(23)-C(24)-O(3)-C(41)</td>
<td>-3.2(5)</td>
<td>C(21)-C(22)-C(23)-C(24)</td>
<td>-1.0(5)</td>
</tr>
<tr>
<td>C(25)-C(24)-O(3)-C(41)</td>
<td>175.9(3)</td>
<td>C(22)-C(23)-C(24)-O(3)</td>
<td>-179.7(3)</td>
</tr>
<tr>
<td>C(42)-C(41)-O(3)-C(24)</td>
<td>-167.6(3)</td>
<td>C(22)-C(23)-C(24)-C(25)</td>
<td>1.2(4)</td>
</tr>
<tr>
<td>N(4)-C(1)-N(1)-N(2)</td>
<td>0.3(4)</td>
<td>O(3)-C(24)-C(25)-C(26)</td>
<td>-179.5(3)</td>
</tr>
<tr>
<td>C(11)-C(1)-N(1)-N(2)</td>
<td>179.8(3)</td>
<td>C(23)-C(24)-C(25)-C(26)</td>
<td>-0.3(4)</td>
</tr>
<tr>
<td>C(1)-N(1)-N(2)-N(3)</td>
<td>-0.4(4)</td>
<td>C(24)-C(25)-C(26)-C(21)</td>
<td>-0.9(5)</td>
</tr>
<tr>
<td>C(1)-N(1)-N(2)-C(31)</td>
<td>-177.0(3)</td>
<td>C(22)-C(21)-C(26)-C(25)</td>
<td>1.1(5)</td>
</tr>
<tr>
<td>C(32)-C(31)-N(2)-N(3)</td>
<td>10.4(5)</td>
<td>C(2)-C(21)-C(26)-C(25)</td>
<td>-178.3(3)</td>
</tr>
<tr>
<td>C(32)-C(31)-N(2)-N(1)</td>
<td>-173.3(3)</td>
<td>N(2)-C(31)-C(32)-C(33)</td>
<td>-175.7(3)</td>
</tr>
<tr>
<td>N(1)-N(2)-N(3)-N(4)</td>
<td>0.4(4)</td>
<td>C(31)-C(32)-C(33)-C(34)</td>
<td>-178.9(3)</td>
</tr>
<tr>
<td>C(31)-N(2)-N(3)-N(4)</td>
<td>176.8(3)</td>
<td>C(32)-C(33)-C(34)-C(35)</td>
<td>-178.1(3)</td>
</tr>
<tr>
<td>N(2)-N(3)-N(4)-C(1)</td>
<td>-0.2(4)</td>
<td>C(33)-C(34)-C(35)-C(36)</td>
<td>-179.9(3)</td>
</tr>
<tr>
<td>N(1)-C(1)-N(4)-N(3)</td>
<td>-0.1(4)</td>
<td>C(34)-C(35)-C(36)-C(37)</td>
<td>-179.2(3)</td>
</tr>
<tr>
<td>C(11)-C(1)-N(4)-N(3)</td>
<td>-179.6(3)</td>
<td>C(35)-C(36)-C(37)-C(38)</td>
<td>179.9(4)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(11)-C(12)</td>
<td>-178.6(3)</td>
<td>C(36)-C(37)-C(38)-C(39)</td>
<td>178.7(4)</td>
</tr>
<tr>
<td>N(4)-C(1)-C(11)-C(12)</td>
<td>0.8(5)</td>
<td>O(3)-C(41)-C(42)-C(43)</td>
<td>-175.6(3)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(11)-C(16)</td>
<td>2.0(5)</td>
<td>C(41)-C(42)-C(43)-C(44)</td>
<td>-178.6(3)</td>
</tr>
<tr>
<td>N(4)-C(1)-C(11)-C(16)</td>
<td>-178.6(3)</td>
<td>C(42)-C(43)-C(44)-C(45)</td>
<td>179.8(3)</td>
</tr>
<tr>
<td>C(16)-C(11)-C(12)-C(13)</td>
<td>1.8(5)</td>
<td>C(43)-C(44)-C(45)-C(46)</td>
<td>179.9(3)</td>
</tr>
<tr>
<td>C(1)-C(11)-C(12)-C(13)</td>
<td>-177.5(3)</td>
<td>C(44)-C(45)-C(46)-C(47)</td>
<td>179.9(3)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)-C(14)</td>
<td>0.2(5)</td>
<td>C(45)-C(46)-C(47)-C(48)</td>
<td>178.8(3)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-C(15)</td>
<td>-2.6(5)</td>
<td>C(46)-C(47)-C(48)-C(49)</td>
<td>179.9(4)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-O(1)</td>
<td>-179.6(3)</td>
<td>N(54)-C(51)-N(51)-N(52)</td>
<td>-0.3(4)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)-C(16)</td>
<td>2.8(5)</td>
<td>C(51)-C(51)-N(51)-N(52)</td>
<td>178.0(3)</td>
</tr>
<tr>
<td>O(1)-C(14)-C(15)-C(16)</td>
<td>179.8(3)</td>
<td>C(51)-N(51)-N(52)-N(53)</td>
<td>0.3(4)</td>
</tr>
<tr>
<td>C(14)-C(15)-C(16)-C(11)</td>
<td>-0.7(5)</td>
<td>C(51)-N(51)-N(52)-C(81)</td>
<td>178.5(3)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(16)-C(15)</td>
<td>-1.5(5)</td>
<td>C(82)-C(81)-N(52)-N(53)</td>
<td>-17.6(5)</td>
</tr>
<tr>
<td>C(1)-C(11)-C(16)-C(15)</td>
<td>177.8(3)</td>
<td>C(82)-C(81)-N(52)-N(51)</td>
<td>164.4(3)</td>
</tr>
<tr>
<td>O(2)-C(2)-C(21)-C(26)</td>
<td>-16.2(5)</td>
<td>N(51)-N(52)-N(53)-N(54)</td>
<td>-0.2(4)</td>
</tr>
<tr>
<td>O(1)-C(2)-C(21)-C(26)</td>
<td>163.0(3)</td>
<td>C(81)-N(52)-N(53)-N(54)</td>
<td>-178.3(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>N(52)-N(53)-N(54)-C(51)</td>
<td>0.0(4)</td>
<td>C(72)-C(71)-C(76)-C(75)</td>
<td>1.1(4)</td>
</tr>
<tr>
<td>N(51)-C(51)-C(61)-C(62)</td>
<td>0.9(5)</td>
<td>C(52)-C(71)-C(76)-C(75)</td>
<td>-177.7(3)</td>
</tr>
<tr>
<td>N(54)-C(51)-C(61)-C(62)</td>
<td>179.0(3)</td>
<td>C(74)-C(75)-C(76)-C(71)</td>
<td>1.1(4)</td>
</tr>
<tr>
<td>N(51)-C(51)-C(61)-C(66)</td>
<td>-177.1(3)</td>
<td>N(52)-C(81)-C(82)-C(83)</td>
<td>179.2(3)</td>
</tr>
<tr>
<td>N(54)-C(51)-C(61)-C(66)</td>
<td>1.0(5)</td>
<td>C(81)-C(82)-C(83)-C(84)</td>
<td>179.0(3)</td>
</tr>
<tr>
<td>C(66)-C(61)-C(62)-C(63)</td>
<td>-0.6(5)</td>
<td>C(82)-C(83)-C(84)-C(85)</td>
<td>178.0(3)</td>
</tr>
<tr>
<td>C(51)-C(61)-C(62)-C(63)</td>
<td>-178.7(3)</td>
<td>C(83)-C(84)-C(85)-C(86)</td>
<td>-179.3(3)</td>
</tr>
<tr>
<td>C(61)-C(62)-C(63)-C(64)</td>
<td>1.2(5)</td>
<td>C(84)-C(85)-C(86)-C(87)</td>
<td>179.5(3)</td>
</tr>
<tr>
<td>C(62)-C(63)-C(64)-C(65)</td>
<td>-0.6(5)</td>
<td>C(85)-C(86)-C(87)-C(88)</td>
<td>-178.8(4)</td>
</tr>
<tr>
<td>C(62)-C(63)-C(64)-O(51)</td>
<td>178.5(3)</td>
<td>C(86)-C(87)-C(88)-C(89)</td>
<td>-179.5(4)</td>
</tr>
<tr>
<td>C(63)-C(64)-C(65)-C(66)</td>
<td>-0.6(5)</td>
<td>O(53)-C(91)-C(92)-C(93)</td>
<td>172.0(3)</td>
</tr>
<tr>
<td>O(51)-C(64)-C(65)-C(66)</td>
<td>-179.7(3)</td>
<td>C(91)-C(92)-C(93)-C(94)</td>
<td>-177.1(3)</td>
</tr>
<tr>
<td>C(64)-C(65)-C(66)-C(61)</td>
<td>1.2(5)</td>
<td>C(92)-C(93)-C(94)-C(95)</td>
<td>175.5(3)</td>
</tr>
<tr>
<td>C(62)-C(61)-C(66)-C(65)</td>
<td>-0.6(5)</td>
<td>C(93)-C(94)-C(95)-C(96)</td>
<td>-178.1(3)</td>
</tr>
<tr>
<td>O(51)-C(61)-C(66)-C(65)</td>
<td>177.4(3)</td>
<td>C(94)-C(95)-C(96)-C(97)</td>
<td>178.3(3)</td>
</tr>
<tr>
<td>O(52)-C(52)-C(71)-C(76)</td>
<td>-166.7(3)</td>
<td>C(95)-C(96)-C(97)-C(98)</td>
<td>180.0(3)</td>
</tr>
<tr>
<td>O(51)-C(52)-C(71)-C(76)</td>
<td>13.5(4)</td>
<td>C(96)-C(97)-C(98)-C(99)</td>
<td>-179.4(4)</td>
</tr>
<tr>
<td>O(52)-C(52)-C(71)-C(72)</td>
<td>14.4(5)</td>
<td>N(51)-C(51)-N(54)-N(53)</td>
<td>0.2(4)</td>
</tr>
<tr>
<td>O(51)-C(52)-C(71)-C(72)</td>
<td>-165.4(2)</td>
<td>C(61)-C(51)-N(54)-N(53)</td>
<td>-178.1(3)</td>
</tr>
<tr>
<td>C(76)-C(71)-C(72)-C(73)</td>
<td>-1.8(4)</td>
<td>O(52)-C(52)-O(51)-C(64)</td>
<td>-2.2(4)</td>
</tr>
<tr>
<td>C(52)-C(71)-C(72)-C(73)</td>
<td>177.1(3)</td>
<td>C(71)-C(52)-O(51)-C(64)</td>
<td>177.6(2)</td>
</tr>
<tr>
<td>C(71)-C(72)-C(73)-C(74)</td>
<td>0.2(4)</td>
<td>C(63)-C(64)-O(51)-C(52)</td>
<td>110.8(3)</td>
</tr>
<tr>
<td>C(72)-C(73)-C(74)-O(53)</td>
<td>-176.2(3)</td>
<td>C(65)-C(64)-O(51)-C(52)</td>
<td>-70.1(4)</td>
</tr>
<tr>
<td>C(72)-C(73)-C(74)-C(75)</td>
<td>2.1(4)</td>
<td>C(75)-C(74)-O(53)-C(91)</td>
<td>-171.8(3)</td>
</tr>
<tr>
<td>O(53)-C(74)-C(75)-C(76)</td>
<td>175.7(2)</td>
<td>C(73)-C(74)-O(53)-C(91)</td>
<td>6.6(4)</td>
</tr>
<tr>
<td>C(73)-C(74)-C(75)-C(76)</td>
<td>-2.8(4)</td>
<td>C(92)-C(91)-O(53)-C(74)</td>
<td>170.5(2)</td>
</tr>
</tbody>
</table>