Supplementary Information

Water adsorption effects of nitrate ion coordinated Al₂O₃ dielectric for high performance metal-oxide thin-film transistor

Jee Ho Parkᵃ†, Kyongjun Kimᵇ†, Young Bum Yooᵃ, Si Yun Parkᵇ, Keon-Hee Limᵇ, Keun Ho Leeᵃ, Hong Koo Baikᵃ* and Youn Sang Kimᵇ,c*

†The first two authors contributed equally to this work.

J. H. Park, Y. B. Yoo, K. H. Lee, Prof. H. K. Baik
Department of Advanced Materials Engineering, Yonsei University,
Seoul 120-749, Republic of Korea, E-mail: thinfilm@yonsei.ac.kr

K. Kim, S. Park, K. –H. Lim, Prof. Y. S. Kim
Program in Nano Science and Technology,
Graduate School of Convergence Science and Technology, Seoul National University
Seoul 151-744, Republic of Korea, E-mail: younskim@snu.ac.kr

Prof. Y. S. Kim
Advanced Institute of Convergence Technology,
864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-72, Republic of Korea

* Corresponding author; Prof. Youn Sang Kim and Prof. Hong Koo Baik
E-mail: younskim@snu.ac.kr, thinfilm@yonsei.ac.kr
Fax: +82-31-888-9148, Tel: +82-31-888-9131
Figure S1.

(a) $2(\text{Al(NO}_3\text{)}_3\cdot9\text{H}_2\text{O}) + \text{C}_3\text{H}_8\text{O}_2$

(b) $\rightarrow 2\text{Al}^{3+} + 6\text{NO}_3^- + 18\text{H}_2\text{O} + \text{C}_3\text{H}_8\text{O}_2$

(c) $\rightarrow 2\text{Al}^{3+} + \text{H}_2\text{O}_2 + 6\text{NO}_3^- + \text{C}_3\text{H}_8\text{O}_2 + 18\text{H}_2\text{O}$

(d) $\xrightarrow{350\,^\circ\text{C}} \text{Al}_2\text{O}_3 + 4\text{NO}_3^- + 21\text{H}_2\text{O}(\text{g}) + 3\text{CO}_2(\text{g}) + \text{N}_2(\text{g}) + \text{H}_2(\text{g})$

(e) $\xrightarrow{500\,^\circ\text{C}} \text{Al}_2\text{O}_3 + 2\text{N}_2(\text{g}) + 6\text{O}_2(\text{g})$

Figure S1. Schematic descriptions and the analyses of the formation of ionic Al$_2$O$_3$ dielectric.

(a) The aluminum nitrate hexahydrate (Al(NO$_3$)$_3$·9H$_2$O) was resolved in methoxyethanol (C$_3$H$_8$O$_2$). (b) The hydrogen peroxide (H$_2$O$_2$) was added to Al$_2$O$_3$ precursor solution for suppression of oxygen vacancy. (c) When the Al$_2$O$_3$ precursor solution was annealed at 350 °C, the Al$_2$O$_3$ was formed with a small amount of nitrate ions (NO$_3^-$). (d) When the ion embedded Al$_2$O$_3$ was annealed over 500 °C, the embedded ions were completely decomposed.
Figure S2. The XPS depth profile of 500 °C annealed Al₂O₃ film. The insets indicate N 1s and C 1s peaks.
Figure S3.

(a) The 10 times coated ionic amorphous Al$_2$O$_3$ layer was fabricated on the heavily boron doped Si wafer and (b) the thickness of amorphous ionic Al$_2$O$_3$ layer was 242.57 nm.
Figure S4. Leakage current density of (a) 350 °C and (b) 500 °C annealed amorphous Al$_2$O$_3$ dielectric with thickness of 242nm and 200nm, respectively. Their values are 4.1×10^{-6}A/cm2 and 4.6×10^{-9}A/cm2 at 1MV/cm, respectively.
Figure S5. The transmittance of ionic amorphous Al$_2$O$_3$ dielectric layers on quartz glass under UV-visible range photons (200 nm ~ 700 nm).
Figure S6. (a) Output curve of TFTs consisted of 350 °C annealed Li-ZnO semiconductor film on 500 °C annealed Al₂O₃ dielectric layer with the sweep of 10 V steps on gate voltage from 0 V to 50 V. (b) Transfer curve of Li-ZnO/Al₂O₃ TFT with drain current of 30V. (c) Clockwise hysteresis of Li-ZnO/Al₂O₃ TFT. (d) Output curve of 350 °C annealed In-ZnO on 500 °C annealed Al₂O₃ dielectric layer with sweep of 10 V steps on gate voltage from 0 V to 50 V. (e) Transfer curve of In-ZnO/Al₂O₃ TFT with drain current of 30 V. (f) Clockwise hysteresis of In-ZnO/Al₂O₃ TFT.
Figure S7. Frequency vs capacitance of 500 °C annealed Al₂O₃ dielectric layer with thickness of 215 nm.