Supporting Information for

Full-colour luminescent compounds based on anthracene and 2,2’-dipyridylamine

Bin Chen, Gang Yu, Xin Li, Yubin Ding, Cheng Wang, Zhiwei Liu, Yongshu Xie

a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai, P. R. China.; E-mail: yshxie@ecust.edu.cn; Fax: (+86) 21-6425-2758. Tel: (+86) 21-6425-0772.
b Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
c Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.

*Corresponding Author: Yongshu Xie
Telephone number: (86)-21-64250772
E-mail address: yshxie@ecust.edu.cn

Table of Content

Crystallography………………………………………………………………………………………………………..Page S2
Characterization spectra……………………………………………………….. Pages S3~S12
Emission spectra of compounds in various solvents………………………… Pages S13~S16
Diagrams showing the HOMO and LUMO levels of 1–8…………………………… Page S16
X-ray crystal structure of 7…………………………………………………………………………………………..Page S17
Table of Quantum yields of 1–8 in various solvents……………………………..Page S17
Experimental section

Crystallography

Single crystals suitable for X-ray analysis of 7 were obtained by slow evaporation of a CH$_3$OH-H$_2$O solution at room temperature.

Crystal data for **7·MeOH**: C$_{47}$H$_{46}$N$_{4}$O, Mw = 682.88 g·mol$^{-1}$, 0.40×0.39×0.20 mm3, Monoclinic, P2(1)/c, a = 24.460(2) Å, b = 10.4080(10) Å, c = 15.1901(14) Å, β = 94.2550(10)$^\circ$, V = 3856.5(6) Å3, F(000) = 1456, ρ$_{\text{calc}}$ = 1.176 Mg·m$^{-3}$, μ (Mo-Kα) = 0.071 mm$^{-1}$, T = 298(2) K, 18184 data were measured on a Bruker SMART Apex diffractometer, of which 6191 were unique (R$_{\text{int}}$ = 0.1171); 508 parameters were refined against Fo2 (all data), final wR$_2$ = 0.3489, S = 1.074, R$_1$ (I > 2σ(I)) = 0.0930, largest final difference peak/hole = +0.314 /-0.262 e.Å$^{-3}$.

CCDC-895653 (2) and 959339 (7) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Fig. S1. The 1H NMR spectrum of 1 in DMSO-d$_6$.

Fig. S2. The 13C NMR spectrum of 1 in DMSO-d$_6$.
Fig. S3. ESI HRMS of 1 in MeOH.

Fig. S4. The 13C NMR spectrum of 2 in CDCl$_3$.
Fig. S5. The 1H NMR spectrum of 4 in DMSO-d$_6$.

Fig. S6. ESI HRMS of 4 in MeOH.
Fig. S7. The 1H NMR spectrum of 5 in DMSO-d$_6$.

Fig. S8. ESI HRMS of 5 in MeOH.
Fig. S9. The 1H NMR spectrum of 6 in CDCl$_3$.

a) Before addition of D$_2$O

b) After addition of D$_2$O

Fig. S10. The 1H NMR spectrum of 6 in CDCl$_3$, a) Before addition of D$_2$O; b) After addition of D$_2$O.
Fig. S11. ESI HRMS of 6 in MeOH.

Fig. S12. The 1H NMR spectrum of 7 in DMSO-d$_6$.
Fig. S13. The 13C NMR spectrum of 7 in DMSO-d$_6$.

Fig. S14. ESI HRMS of 7 in MeOH.
Fig. S15. The 1H NMR spectrum of 8 in DMSO-d$_6$.

Fig. S16. The 13C NMR spectrum of 8 in DMSO-d$_6$.
Fig. S17. ESI HRMS of 8 in MeOH.

Fig. S18. The 1H NMR spectrum of 9 in CDCl$_3$.
Fig. S19. The 1H NMR spectrum of 9 in CDCl$_3$, a) Before addition of D$_2$O; b) After addition of D$_2$O.

Fig. S20. ESI HRMS of 9 in MeOH.
Fig. S21. Emission spectra of 1 recorded in various solvents.

Fig. S22. Emission spectra of 2 recorded in various solvents.
Fig. S23. Emission spectra of 3 recorded in various solvents.

Fig. S24. Emission spectra of 4 recorded in various solvents.
Fig. S25. Emission spectra of 5 recorded in various solvents.

Fig. S26. Emission spectra of 6 recorded in various solvents.
Fig. S27. Emission spectra of 8 recorded in various solvents.

Fig. S28. Diagrams showing the HOMO and LUMO levels of 1–8.
Fig. S29. X-ray crystal structure of 7.

Table 1. Quantum yields of 1–8 in different solvents.

<table>
<thead>
<tr>
<th>entry</th>
<th>CHΦ%</th>
<th>THFΦ%</th>
<th>CH2Cl2Φ%</th>
<th>MeOHΦ%</th>
<th>ACNΦ%</th>
<th>DMSOΦ%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>7.5</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>51</td>
<td>83</td>
<td>80</td>
<td>60</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
<td>50</td>
<td>69</td>
<td>66</td>
<td>72</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>11</td>
<td>15</td>
<td>14</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>46</td>
<td>41</td>
<td>34</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>74</td>
<td>67</td>
<td>21</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>1.3</td>
<td>1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Note: n. d. denotes too weak signal to be detected.