Electronic Supplementary Information

Constructing flexible cellulose-Cu nanocomposite film through \textit{in situ}
coating with highly single-side conductive performance

Baoquan Jia, Yue Dong, Jinping Zhou* and Lina Zhang

\textit{Department of Chemistry, Wuhan University, Wuhan 430072, China}

* Corresponding author. Tel.: +86 27 87219274. Fax: +86 27 68754067.
E-mail address: zhoujp325@whu.edu.cn (J. Zhou)
Fig. S1 XRD patterns of the (a) regenerated cellulose (RC) film, (b) coagulated film and (c) RC-Cu nanocomposite film. The films were cut into powder before measurement.

Fig. S2 SEM images and EDS spectra of the front surface of the (a) RC and (b) coagulated films.
Fig. S3 XRD pattern of the CuO powder (JCPDS file no. 48-1548) of RC-Cu nanocomposite film calcined at 600 °C for 3 h.

Fig. S4 Conductivity of the RC-Cu nanocomposite film at different degrees of bending.
Fig. S5 Resistance ratio of the RC-Cu nanocomposite film versus number of bending measured by multimeter.