Two-component organogel for visually detecting nitrite anion

Qian Xia, a Yueyuan Mao, a Junchen Wu, b Tianming Shu, a and Tao Yi* a

a Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433; b Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China

Fig. S1 SEM images of the xerogels of 2+EDA (a) and 2+HDA (b) in octanol, scale bars for a and b are 5 and 10 μm, respectively.
Fig. S2 IR spectra of powder 1, DAQ and gel 1+DAQ formed in CH$_3$CN.

Fig. S3 XRD spectra of NBDA (a), HAD (b) and the corresponding xerogels of 1+NBDA (c), 1+HDA (d) and 1+EDA (e). Numbers marked on the peaks of XRD stands for value of distance (Å).
Fig. S4 Absorption (solid line) and emission (dash line) spectra of compound 1 (blue) and DAQ (red) in CH$_3$CN. Concentration = 1×10^{-5} M.

Fig. S5 Emission spectra of the sol and gel of (a) 1+HDA in cyclohexane and (b) 1+NBDA in acetonitrile. Insets are pictures of gels in 365 UV-light. Molar ratio of acid: amine = 2:1, the concentration for sols are 5×10^{-4} M and for gels are 25 mg/mL.
Fig. S6 LC-MS results of the THF solutions of mixture of gel 1+DAQ treated without (a) and with (b) \(\text{NO}_2^- \).
Fig. S7 The absorption spectra of the liquid part and solid part of gel 1+DAQ treated with 200 equivalences of NaNO₂ aqueous solution, from which the difference of the absorbance can be calculated.