Supplementary Information

Influences of Side Chain Length and Bifurcation Point on Crystalline Structure and Charge Transport of Diketopyrrolopyrrole-Quaterthiophene Copolymers (PDQTs)

Shaoyun Chen,‡ab Bin Sun,‡a Wei Hong,a Hany Aziz,‡c Yuezhong Meng,‡b and Yuning Li*a

a Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), 200 University Ave W, Waterloo, Ontario, N2L 3G1, Canada; Fax: +1 519-888-4347; Tel: +1 519-888-4567 ext. 31105; Email: yuning.li@uwaterloo.ca.
b The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province / State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, P. R. China; Email: mengyzh@mail.sysu.edu.cn.
c Department of Electrical and Computer Engineering/Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.

Contents

Additional data: 1H-NMR and 13C-NMR spectra, diagrams of thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and cyclic voltammograms (CV).
Supplementary Information

$\text{C}_{10}\text{H}_{21}$

$\text{C}_{12}\text{H}_{25}$

N

O

S

O

$\text{C}_{12}\text{H}_{25}$

$\text{C}_{10}\text{H}_{21}$

$^1\text{H}-\text{NMR (CDCl}_3\text{, 300 MHz)}$

Figure S1 The ^1H-NMR spectrum of DBT-26.
Supplementary Information

\[\text{C}_{10}\text{H}_{21} \]
\[\text{C}_{12}\text{H}_{25} \]
\[\text{N} - \text{O} \]
\[\text{S} \]
\[\text{C}\]
\[\text{N} - \text{O} \]
\[\text{C}_{12}\text{H}_{25} \]
\[\text{C}_{10}\text{H}_{21} \]

\[^{13}\text{C}-\text{NMR (CDCl}_3, 75 \text{ MHz)}\]

![C-NMR spectrum of DBT-26](image)

Figure S2 The \(^{13}\text{C}-\text{NMR spectra of DBT-26.}**
Supplementary Information

$\text{C}_{10}\text{H}_{21}$

$\text{C}_{12}\text{H}_{25}$

N

O

Br

S

Br

$\text{C}_{12}\text{H}_{25}$

$\text{C}_{10}\text{H}_{21}$

$^1\text{H}-\text{NMR} (\text{CDCl}_3, 300 \text{ MHz})$

Figure S3 The $^1\text{H}-\text{NMR}$ spectrum of M-26.
Supplementary Information

$\text{C}_{10}\text{H}_{21}$
$\text{C}_{12}\text{H}_{25}$
Br
S
N
O
O
$\text{C}_{12}\text{H}_{25}$
$\text{C}_{10}\text{H}_{21}$

^{13}C-NMR (CDCl$_3$, 75 MHz)

Figure S4 The ^{13}C-NMR spectrum of M-26.
Figure S5 Diagrams of thermal analysis of PDQT-20, PDQT-24 and PDQT-26. Top: TGA curves with a heating rate of 10 °C min\(^{-1}\) under N\(_2\). Bottom: DSC curves with a heating rate of 10 °C min\(^{-1}\) under nitrogen.
Figure S6 Cyclic voltammograms of PDQT-20, PDQT-24 and PDQT-26 thin films in 0.1 M tetrabutylammonium hexafluorophosphate in dry acetonitrile at a sweeping rate of 50 mV s\(^{-1}\) under nitrogen using ferrocene (Fc) as a standard.