Supporting information for Solid-state electrochromic devices: relationship of contrast as a function of device preparation parameters

By: Amrita Kumara, Michael T. Otleya, Fahad Alhasmi Alamarb, Yumin Zhua, Blaise G. Ardena and Gregory A. Sotzinga,b

Corresponding Author: Gregory Sotzing*

Contact: sotzing@mail.ims.uconn.edu, tel: 860-486-4619, fax: 860-486-4745,

University of Connecticut, Department of Chemistry, Polymer Program, and Department of Physics, 97 North Eagleville Road, Storrs, CT 06269-3136

Photopic contrast as a function of effective polymer layer thickness for PBPMOM-ProDOT using the \textit{in situ} method:

\begin{itemize}
 \item \textbf{Fig. S1} Photopic contrast as a function of effective polymer layer thickness for 2.5 wt\% BPMOM-ProDOT using the \textit{in situ} method.
\end{itemize}
Fig. S2 a) Colored state and b) Bleached state for an electrochromic window with a 4cm² active area using the *in situ* procedure with 2.5 wt% ProDOT-Me₂ in the electrolyte gel.

Diffusion study: Diffusion coefficients of different concentrations of EDOT, ProDOT-Me₂, and BPMOM-ProDOT were performed following our previous work.¹
Diffusion coefficient of different concentrations of ProDOT-Me$_2$ in solid gel electrolyte:

Fig. S3: Diffusion coefficient of ProDOT-Me$_2$ at different concentrations (w/w) inside the gel matrix.

Reference: