Supporting Information

Electrically Programmable Digital Memory Behaviors Based on Novel Functional Aromatic Polyimide/TiO$_2$ Hybrids with High ON/OFF Ratio

By Chih-Jung Chen, $^+$ Chia-Liang Tsai, $^+$ and Guey-Sheng Liou*

Functional Polymeric Materials Laboratory, Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan

Tel: +886-2-336-5315; Fax: +886-2-336-5237; E-mail: gsliou@ntu.edu.tw

[+] The authors contributed equally to this work

List of Contents for Supplementary Material:

Figure S1. IR spectra of the studied films (a) 3SOH-6FPI and (b) 3STP-50 SI-2
Figure S2. 1H NMR spectrum of polyimide 3SOH-6FPI .. SI-3
Figure S3. TGA thermograms of 3SOH-6FPI hybrid materials (a) in N2 (b) in air SI-4
Figure S4. TMA thermogram of 3SOH-6FPI hybrid materials .. SI-5
Figure S5. UV-visible absorption spectrum of 3SOH-6FPI .. SI-6
Figure S6. Cyclic voltammetric diagram of 3SOH-6FPI film on an ITO-coated glass substrate over cyclic scan ... SI-7
Figure S7. Current-voltage (I-V) characteristics of the ITO/3STP-5/Al memory device .. SI-8
Figure S8. Current-voltage (I-V) characteristics of the ITO/3STP-50/Al memory device. SI-9
Table S1. Inherent Viscosities and GPC Data of 3SOH-6FPI .. SI-10
Table S2. Solubility of 3SOH-6FPI .. SI-10
Figure S1. IR spectra of the studied films (a) 3SOH-6FPI and (b) 3STP-50.
Figure S2. 1H NMR spectrum of polyimide 3SOH-6FPI.
Figure S3. TGA thermograms of 3SOH-6FPI hybrid materials (a) in N2 (b) in air.
Figure S4. TMA thermogram of 3SOH-6FPI hybrid materials.
Figure S5. UV-visible absorption spectrum of 3SOH-6FPI.
Figure S6. Cyclic voltammetric diagram of 3SOH-6FPI film on an ITO-coated glass substrate over cyclic scan.
Figure S7. Current-voltage (I-V) characteristics of the ITO/3STP-5/Al memory device.
Figure S8. Current-voltage (I-V) characteristics of the ITO/3STP-50/Al memory device.
Table S1. Inherent Viscosities and GPC Data of 3SOH-6FPI.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>(\eta_{\text{inh}}^a) (dL/g)</th>
<th>(M_w^b)</th>
<th>(M_n^b)</th>
<th>PDI(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SOH-6FPI</td>
<td>0.49</td>
<td>103200</td>
<td>52800</td>
<td>1.95</td>
</tr>
</tbody>
</table>

\(^a\) Measured at a polymer concentration of 0.5 g/dL in DMAc at 30 \(^\circ\)C.

\(^b\) Calibrated with polystyrene standards, using NMP as the eluent at a constant flow rate of 0.5 mL/min at 40 \(^\circ\)C.

\(^c\) Polydispersity index \((M_w/M_n)\).

Table S2. Solubility\(^a\) of 3SOH-6FPI.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NMP</td>
</tr>
<tr>
<td>3SOH-6FPI</td>
<td>++</td>
</tr>
</tbody>
</table>

\(^a\) The qualitative solubility was tested with 10 mg of a sample in 1 mL of stirred solvent. (++) soluble at room temperature, (+) soluble on heating, (+−) partial soluble on heating, (−) insoluble even on heating.