Supporting Information

Enhancement of Mechanical Stability in Hydrogen-bonded Photomobile Materials with Chemically Modified Single-walled Carbon Nanotubes

Tetsuya Ozawa*, Mizuho Kondo*, Jun-ichi Mamiya* and Tomiki Ikeda*

Materials and experimental setup

The molecular weight of polymers was determined by gel permeation chromatography (GPC; Japan Spectroscopy Co., DG-980-50; column, Shodex LF804 + LF804 + LF804A; eluent, tetrahydrofuran (THF)) with polystyrene standards used for calibration. A complex of the copolymer and the crosslinker (PAAC-P) was prepared from a THF solution containing equimolar amounts of the carboxy group and pyridine moiety. The mesomorphic properties of the copolymer and the complex were evaluated by differential scanning calorimetry (DSC; SII, DSC6220G) with heating and cooling rates of 10 °C/min. P-SWNTs prepared by high pressure CO (HiPCO) synthesis were purchased from Carbon Nanotechnologies, Inc. Chemical modification of the P-SWNTs was conducted according to the literature. For purification, the P-SWNTs were thermally oxidized at 230 °C for 18 h to remove residual amorphous carbon and subsequently stirred in 2 mol/L HCl to remove metal impurities. Purified SWNTs were obtained by filtration and drying under reduced pressure for 12 h. The purified SWNTs were then oxidized by sonication in a H₂SO₄/HNO₃ mixture (3:1) for 1 h, followed by dilution and washing with water. Chemical modification of the SWNTs was confirmed by Raman spectroscopy (Jasco, NRS-2100), IR spectroscopy (Jasco, FT/IR-610), and X-ray photoelectron spectroscopy (XPS; Shimadzu, ESCA-3400 for chemical analysis). UV-vis absorption spectra of the polymer were measured using a Jasco V-550 spectrometer. Optical anisotropy of the composite fiber and dispersive properties of the SWNTs were characterized with a polarizing optical microscope (Olympus, BX50). Photoinduced macroscopic deformation was observed by irradiation with UV light at 365 nm from a UV-LED (Keyence, UV-400 with UV-50H and L-8) instrument and recorded with a digital video camera (Omron, VC-1000 and VC-HRM20Z). After measurement, the bent film was exposed to visible light from a 530 nm LED irradiator (CCS, PJ-1505-2CA with HLV-24GR-3W) to revert to the initial shape. The tensile stress and the mechanical force generated by photoirradiation of the fibers were measured with a thermomechanical analyzer (Shimadzu, TMA-60).

Figure S1. (A) IR and (B) Raman spectra of SWNTs before and after chemical modification.
Figure S2. XPS spectrum of O-SWNT. The inset shows the magnified spectrum for the C 1s region.

Figure S3. DSC thermograms of the copolymer (PAAC) and the complex with PEAP (PAAC-P) on heating.

Figure S4. UV-vis absorption spectra of PAAC-P (left) and P/OS-0.1 (right) in DMF upon irradiation at 366 nm.
The dark region in a figure for P/OS-1 (Fig. S5, second row, middle) is most probably due to an isotropic defect produced during drawing the fiber.

Figure S5. Polarizing optical microscopy images of the texture of the fibers.

The dark region in a figure for P/OS-1 (Fig. S5, second row, middle) is most probably due to an isotropic defect produced during drawing the fiber.

Figure S6. Stress-strain curves of the composite fibers at room temperature (loading rate = 50 mN min⁻¹).