Acetylferroceneoxime based Photoacid Generators for photochemical Modification and Patterning of Polymer Surfaces

Mohammed Ikbal, Rakesh Banerjee, Shrabani Barman, Sanghamitra Atta, Dibakar Dhara* and N. D. Pradeep Singh*[a]

Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

Phone: (+) 91-3222-282324; Fax: (+) 91-3222-282252

E-mail: *[a] ndpradeep@yahoo.co.in, *dibakar@chem.iitkgp.ernet.in

Supporting Information

Contents page no
1. Characterization data of carboxylates and sulfonate esters……………………………………S2-S9
2. FT-IR spectral change of copolymer AFO-PCL (8) film on irradiation above 350 nm....S10
3. FT-IR spectral change of the polymer film AFO-PCL (8) before (blue) and after (black) treatment with MTEOS vapor…………………………………………………………………………………S10
$\delta = 4.74-4.75$ ppm
$\delta = 4.44-4.45$ ppm

$\delta = 2.33$ ppm

$\delta = 6.60$ ppm
$\delta = 5.97$ ppm

$\delta = 6.25-6.38$ ppm

$\delta = 2.33$ ppm

$\delta = 4.24$ ppm
\[\delta = 4.74 \text{ ppm} \]
\[\delta = 4.41 \text{ ppm} \]
\[\delta = 2.38 \text{ ppm} \]
\[\delta = 7.44-7.59 \text{ ppm} \]
\[\delta = 8.12 \text{ ppm} \]
\[\delta = 4.21 \text{ ppm} \]

\[\delta = 7.44-7.59 \text{ ppm} \]

\[\delta = 4.41 \text{ ppm} \]
\[\delta = 2.38 \text{ ppm} \]

\[\delta = 7.44-7.59 \text{ ppm} \]

\[\delta = 8.12 \text{ ppm} \]

\[\delta = 4.21 \text{ ppm} \]
\(\delta = 4.74 \text{ ppm} \)

\(\delta = 4.42 \text{ ppm} \)

\(\delta = 2.38 \text{ ppm} \)

\(\delta = 3.88 \text{ ppm} \)

\(\delta = 6.96 \text{ ppm} \)

\(\delta = 8.07 \text{ ppm} \)
$\delta = 4.62 \text{ ppm}$

$\delta = 4.81 \text{ ppm}$

$\delta = 2.69 \text{ ppm}$

$\delta = 3.13 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.13 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm}$

$\delta = 4.25 \text{ ppm}$

$\delta = 3.69 \text{ ppm
\[\delta = 4.80-4.82 \text{ ppm} \]
\[\delta = 2.73 \text{ ppm} \]
\[\delta = 7.96 \text{ ppm} \]
\[\delta = 7.55 \text{ ppm} \]
\[\delta = 6.70-6.84 \text{ ppm} \]
\[\delta = 5.42 \text{ ppm} \]
\[\delta = 5.89 \text{ ppm} \]
\[\delta = 4.82-4.83 \text{ ppm} \]

(b) $\delta = 4.26 \text{ ppm}$

\[\delta = 2.77 \text{ ppm} \]

\[\delta = 6.95-7.01 \text{ ppm} \]

\[\delta = 8.00-8.06 \text{ ppm} \]

$\delta = 4.42-4.45 \text{ ppm}$

\[\delta = 6.9-7.01 \text{ ppm} \]

\[\delta = 8.0-8.06 \text{ ppm} \]
Figure-S1. FT-IR spectral change of copolymer AFO-PCL (8) film on irradiation above 350 nm.

Figure-S2. FT-IR spectral change of the polymer film AFO-PCL (8) before (blue) and after (black) treatment with MTEOS vapor for 20 min.