Electronic Supplementary Information

Aggregation-Induced Emission Encoding Supramolecular Polymer Based on Controllable Sulfonatocalixarene Recognition in Aqueous Solution

Xuyang Yao, Xiang Ma* and He Tian

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China, Fax: (+86)-21-64252758, E-mail: maxiang@ecust.edu.cn

Fig. S1 UV-vis spectrum of TPPE in solution of H$_2$O: THF=1:1 at different pH.
Fig. S2 DLS result of supramolecular polymer SP1 constructed with TPPE and BSC4 in pH=2 phosphate buffer.

Fig. S3 DLS result of supramolecular polymer SP2 constructed with TMPPE and BSC4 in pH=2 phosphate buffer.
Fig. S4 Left: SEM picture of TPPE aggregation (droplets of TPPE solution on a glass plate, 1.5×10^{-5}M); Right: photo of TPPE in H2O irradiated by 365nm UV light and taken in darkness, 1.5×10^{-5}M).

Fig. S5 The representation of the reversibility and repeatability between state A and B modulated by pH of supramolecular polymer SP1 constructed with TPPE and BSC4. Excited at 350 nm.
Fig. S6 The representation of the reversibility and repeatability between state ON and OFF modulated by pH of supramolecular polymer SP1 formed with TPPE and BSC4. Excited at 350 nm.

Fig. S7 Fluorescence emission spectrum of TPPE and protonated TPPE in solution of H₂O and H₂O:THF=1:1.
Fig. S8 1H NMR spectra of TPPE (a) and TPPE with BSC4 (b) in D$_2$O: THF-d$_8$ (400 MHZ).

Fig. S9 1H NMR spectrum of BSC4 in D$_2$O (400 MHZ).
Fig. S10 Synthetic route to TPPE (3) and TMPPE (4). 4I⁻ of TMPPE (4) are omitted here for clarity.

Fig. S11 1H NMR spectrum of TPPE in CDCl$_3$ (400 MHz).
Fig. S12 ESI-MS spectrum of TPPE ([M+H]+=641.2682).

Fig. S13 1H NMR spectrum of TMPPE in DMSO-\textit{d}_6 (400 MHz).
Fig. S14 13C NMR spectrum of TMPPE in DMSO-d_6 (100 MHZ).

Fig. S15 ESI-MS spectrum of TMPPE ([M-I]$^+$=1081.0701).