Eu(II) luminescence in the perovskite host lattices KMgH₃, NaMgH₃ and mixed crystals LiBa_xSr_{1-x}H₃

N. Kunkel^{a*}, A. Meijerink^b, M. Springborg^a and H. Kohlmann^{c*},

Supporting information

I. Characterization

X-ray powder diffraction data were collected on a *Panalytical Philips X'Pert Pro* diffractometer or a *Bruker D8 Advance* (with *Lynxeye*) with focusing Bragg-Brentano geometry and a fine focus X-ray tube (CuK $\alpha_{1,2}$ radiation). Samples were enclosed between kapton foils in apiezon grease, leading to an increased amorphous background below 22° 20 and the two reflections at 21.53° 20 and 23.91° 20. The data collection time was 60 min, diffraction range 10 – 110° 20. Furthermore, temperature-dependent XRD data of KMgH₃ were recorded on a *Huber G670* Guinier camera (CuK α_1) with cryostat. Crystal structure refinement was carried out via Rietveld analysis using TOPAS 4.2 (Bruker AXS, Karlsruhe, Germany)¹ and the fundamental parameter approach². The instrumental function was determined empirically by means of a reference scan of LaB₆. Typically, complete structures including hydrogen positions from literature were taken as starting structures and scale factors, lattice parameters, atomic constants are given as calculated by the program TOPAS 4.2 and might be underestimated, as can be often seen in Rietveld refinement programs³.

Some KMgH₃ samples contained K₂MgH₄, however, since the KMgH₃: Eu^{2+} sample used for temperature-dependent measurements did not contain impurity phase, the luminescence emission originates from KMgH₃: Eu^{2+} .

Figure 1: Temperature-dependent XRD data of KMgH₃.

Figure 2: Refinement of the crystal structure of KMgH₃:Eu²⁺ (1.0 mol%).

Figure 3: Refinement of the crystal structure of NaMgH₃.

Figure 4: Refinement of the crystal structure of LiBa_{0.2}Sr_{0.8}H₃:Eu²⁺ (0.5 mol%).

Figure 5: Excitation spectrum of KMgH₃:Eu²⁺ (1.0 mol%) at 5 K.

II. References

1 Bruker, AXS, Karlsruhe, TOPAS V4.2, Gerneral profile and structure analysis software for powder diffraction data, Users's Manual, 2009.

2 A. A. Coelho, J. Appl. Crystallogr. 2003, 36, 86-95.

3 B. H. Toby, Powder Diffr. 2006, 21, 67-70.