A new two-dimensional D-A copolymer based on 4, 8-bis(2’-ethylhexylthiophene)thieno[2,3-f]benzofuran for high performance polymer solar cells

Ling Fan‡a, Ruili Cui‡a,b, Xiuping Guo‡a, Dong Qiana, Beibei Qiu, Jun Yuan, Yongfang Li, Wenlong Huang, Junliang Yang, Weifang Liu, Xinjun Xu, Lidong Li, Yingping Zoua,b,e*

a. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China. E-mail: yingpingzou@csu.edu.cn (Y.Zou)

b. Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China.

c. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

d. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

e. State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China.

‡ L.Fan, R.Cui and X.Guo contributed this work equally.
Figure S1 1HNMR of compound 4

Figure S2 1HNMR of monomer M1
Figure S3 ^{13}C NMR of monomer M1

Figure S4 ^1HNMR of PTBFTDTBT
Figure S5 (a) Transfer characteristics of the PTBFTDTBT OFET measured at $V_{ds} = -$50 V. (b) Output characteristics with V_{DS} varying from 10 V to -50 V in steps of 10 V deposited on OTS modified SiO$_2$.

Figure S6 TEM images of PTBFTDTBT/PC$_{71}$BM blend films prepared by ODCB. (a) 1:1 D/A ratio; (b) 1:2 D/A ratio. Scale bar: 20 nm.