A facile way to introduce planar defects into colloidal photonic crystals for pronounced pass bands

Kuo Zhonga; Pieter-Jan Demeyera; Xingping Zhoub; Niels Verllec,d; Olga Kruglovaa; Victor V. Moshchalkovc; Kai Songe; Koen Claysa*

a Department of Chemistry KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Leuven), Belgium;
b School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
c INPAC-Institute for Nanoscale Physics and Chemistry, KU Leuven, Celestijnenlaan 200 D, B-3001 Heverlee (Leuven), Belgium;
d IMEC, Kapeldreef 75, 3001 Heverlee (Leuven), Belgium;
e Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Fig. S1. Photograph of monolayer solid silica spheres on the water surface

![Image of monolayer solid silica spheres on the water surface](image1.jpg)

Fig. S2. The smaller monolayer of solid SiO\(_2\) spheres on the surface of PS@SiO\(_2\) (276 nm) CPCs. A) Diameter of 185 nm solid SiO\(_2\) spheres; B) Diameter of 263 nm solid SiO\(_2\) spheres

![Image of solid SiO\(_2\) spheres on PS@SiO\(_2\) surface](image2.jpg)
Fig. S3. A). A few representative reflectance spectra of the PS@SiO₂ (276nm) CPCs embedded 380nm monolayer solid silica spheres as a defect layer are taken from different points of the selected region; B). A microscope image showing different measuring points corresponding to the spectra of Fig. S3 A); C). A microscope image of hollow CCs containing a defect layer of 370 nm obtained after calcination. (Corresponding to the reflectance spectrum of Fig. 4h)

![Image](image1.png)

Fig. S4. The reflectance spectrum of obtained CPCs containing a defect layer of 380nm. The inset of this Fig. represents a magnified spectrum of the passband in the PBG. (Corresponding to Fig. 4d)

Q-value is given by following equation:

\[Q = \frac{\nu}{\Delta \nu} = \frac{\lambda}{\Delta \lambda} \]
Where ν is the resonance frequency, $\Delta \nu$ is the frequency width, the λ is the peak wavelength, and $\Delta \lambda$ is the FWHM.

Fig. S5. Reflection spectra of the perfect CPCs for estimating the photonic band gap widths. A). PS@SiO$_2$ core-shell CCs; B). hollow SiO$_2$ spheres CCs