Correlating On-Substrate Prepared Electrochromes With Their Soluble Processed Counterparts – Towards Validating Polyazomethines as Electrochromes in Functioning Devices

Michael E. Mulholland,1 Daminda Navarathne,1,2 Michiel L. Petrus,3,4 Theo J. Dingmans,3,* W.G. Skene1,*

1Laboratoire de caractérisation photophysique des matériaux conjugués
Département de Chimie, Pavillon JA Bombardier,
Université de Montréal, CP 6128, succ. Centre-ville,
Montréal, Québec, Canada H3C 3J7

2Current address: CYTEC Industries
1937 West Main Street
Stamford Connecticut
United States 06902

3Address: Delft University of Technology
Faculty of Aerospace Engineering
Kluyverweg 1, 2629 HS
Delft, The Netherlands

4 Dutch Polymer Insitute (DPI),
P.O. Box 902, 5600AX Eindhoven,
The Netherlands

Corresponding authors: T.J.Dingemans@tudelft.nl and w.skene@umontreal.ca

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Available: Complete material characterization data.
Table of Contents

Figure S1. Thermal gravimetric isotherms of P1 (▬), P2 (▬), and P3 (▬) with 5 wt% loss (▬) shown...5

Figure S2. DSC curves of P1 (▬), P2 (▬), and P3 (▬) ...5

Figure S3. Normalized absorbance spectra of P1 (▬), P2 (▬), and P3 (▬) in solution6

Figure S4. Normalized absorbance spectra of spray coated films P1 (▬), P2 (▬), and P3 (▬) immobilized as 200 nm thin films on glass substrates. ...6

Figure S5. Solution electrochemistry of P1 in dichloromethane with 0.1 M TBAPF₆ supporting electrolyte. (Ferrocene was added as the internal standard). ...7

Figure S6. Solution electrochemistry of P2 in dichloromethane with 0.1 M TBAPF₆ supporting electrolyte. (Ferrocene was added as the internal standard). ...7

Figure S7. Solution electrochemistry of P3 in dichloromethane with 0.1 M TBAPF₆ supporting electrolyte. (Ferrocene was added as the internal standard). ...8

Figure S8. Solution electrochemistry of the solution polymerized polymers P1 (▬), P2 (▬), and P3 (▬) in dichloromethane with 0.1 M TBAPF₆ supporting electrolyte. (Ferrocene was added as the internal standard)...8

Figure S9. On-substrate (a) vs solution polymerized (b) films of EDOT polymers on ITO coated glass substrates. Left: OMe, Middle: H, Right: CN. ..9

Figure S10. Normalized absorbance spectra of Pₒₛ1 (▬), Pₒₛ2 (▬), and Pₒₛ3 (▬) on ITO substrate, Inset: photographs of Pₒₛ3 (left), Pₒₛ1 (middle) and Pₒₛ2 (right) films on ITO substrates...9

Figure S11. Spectroelectrochemistry of Pₒₛ1 on ITO substrate in the neutral (▬) and oxidized (▬) states. ...10

Figure S12. Spectroelectrochemistry of Pₒₛ2 on ITO substrate in the neutral (▬) and oxidized (▬) states. ...10

Figure S13. Spectroelectrochemistry of Pₒₛ3 on ITO substrate in the neutral (▬) and oxidized (▬) states. ...10

Figure S14. Spectroelectrochemistry of Pₒₛ1 in original (▬), oxidized (▬), and neutral (▬) states on ITO substrate in acetonitrile with 0.1 M TBAPF₆ supporting electrolyte with Ag/Ag⁺ non-aqueous reference and Pt wire counter electrodes. Inset: photographs of Pₒₛ1 films on ITO in original (left), oxidized (middle) and neutral (left) states. ..11

Figure S15. Electrochemistry of Pₒₛ1 on ITO substrate in acetonitrile with 0.1 M TBAPF₆ supporting electrolyte with Ag/Ag⁺ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s. ..12

Figure S16. Electrochemistry of Pₒₛ2 on ITO substrate in acetonitrile with 0.1 M TBAPF₆ supporting electrolyte with Ag/Ag⁺ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s. ..12
Figure S17. Electrochemistry of P_{os3} on ITO substrate in acetonitrile with 0.1 M TBAPF$_6$ supporting electrolyte with Ag/Ag$^+$ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s. ..13

Figure S18. Spectroelectrochemistry of P_{os4} on ITO substrate in the neutral (▬) and oxidized (▬) states. ...13

Figure S19. Spectroelectrochemistry of P_{os5} on ITO substrate in the neutral (▬) and oxidized (▬) states. ...14

Figure S20. Spectroelectrochemistry of P_{os6} on ITO substrate in the neutral (▬) and oxidized (▬) states. ...14

Figure S21. Electrochemistry of P_{os4} on ITO substrate acetonitrile with 0.1 M TBAPF$_6$ supporting electrolyte with Ag/Ag$^+$ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s. ..15

Figure S22. Electrochemistry of P_{os5} on ITO substrate acetonitrile with 0.1 M TBAPF$_6$ supporting electrolyte with Ag/Ag$^+$ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s. ..15

Figure S23. Electrochemistry of P_{os6} on ITO substrate acetonitrile with 0.1 M TBAPF$_6$ supporting electrolyte with Ag/Ag$^+$ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s. ..16

Figure S24. Spectroelectrochemistry of P_{os4} on ITO substrate in the neutral (▬) and oxidized (▬) states. Inset: photographs of the neutral (left) and oxidized (right) states of TPA-Th films. 16

Figure S25. Neutral (left) and oxidized (right) states of electrochromic devices with the solution prepared azomethines as the electroactive layer ..17

Figure S26. Transmission % of P_{1} on ITO substrate as a function of time monitored at 710 nm as a function of applied potential between 3.0 and -0.9 V at 30 sec intervals. ..17

Figure S27. Transmission % of P_{2} on ITO substrate as a function of time monitored at 710 nm as a function of applied potential between 3.0 and -0.9 V at 30 sec intervals. ..18

Figure S28. Transmission % of P_{3} on ITO substrate as a function of time monitored at 710 nm as a function of applied potential between 3.0 and -0.9 V at 30 sec intervals. ..18

Figure S29. Neutral (left) and oxidized (right) states of electrochromic devices prepared with on-substrate prepared polyazomethines as the electroactive layer ...19

Table S1. 2° CIE Lab coordinates of polyazomethines in solution20

Table S2. 2° CIE Lab coordinates of solution-made polyazomethines immobilized on ITO coated glass substrates ...20

Table S3. 2° CIE Lab coordinates of on-substrate prepared polyazomethines immobilized on ITO coated glass substrates ...20

Figure S30. 2° CIE Lab coordinates of P_{1}-P_{3} of thin films on ITO coated glass21

Figure S31. 2° CIE Lab coordinates for P_{os1}-P_{os3} of thin films on ITO coated glass.21

Figure S32. 2° CIE Lab coordinates for P_{os4}-P_{os6} of thin films on ITO coated glass.22

Figure S34. IR spectrum of P_{1} ...23
Figure S35. IR spectrum of \(\mathbf{P}_2 \). ...24
Figure S36. \(^1\text{H}-\text{NMR} \) spectrum of \(\mathbf{P}_2 \) in CDCl\(_3\). ...25
Figure S37. IR spectrum of \(\mathbf{P}_3 \). ...26
Figure S38. \(^1\text{H}-\text{NMR} \) spectrum of \(\mathbf{P}_3 \) in CDCl\(_3\). ...27
Figure S39. \(^1\text{H}-\text{NMR} \) spectrum of \(\mathbf{P}_1 \) in CDCl\(_3\). ...28
Figure S40. First profilometry scan of \(\mathbf{P}_1 \) film on ITO coated glass. ...29
Figure S41. Second profilometry scan of \(\mathbf{P}_1 \) film on ITO coated glass. ...29
Figure S42. Third profilometry scan of \(\mathbf{P}_1 \) film on ITO coated glass. ...30
Figure S43. First profilometry scan of \(\mathbf{P}_2 \) on ITO coated glass. ...30
Figure S44. Second profilometry scan of \(\mathbf{P}_2 \) on ITO coated glass. ...31
Figure S45. Third profilometry scan of \(\mathbf{P}_2 \) on ITO coated glass. ...31
Figure S46. First profilometry scan of \(\mathbf{P}_3 \) on ITO coated glass. ...32
Figure S47. Second profilometry scan of \(\mathbf{P}_3 \) on ITO coated glass. ...32
Figure S48. Third profilometry scan of \(\mathbf{P}_3 \) on ITO coated glass. ...33
Figure S49. First profilometry scan of \(\mathbf{P}_{\text{os}1} \) on ITO coated glass. ...33
Figure S50. Second profilometry scan of \(\mathbf{P}_{\text{os}1} \) on ITO coated glass. ...34
Figure S51. Third profilometry scan of \(\mathbf{P}_{\text{os}1} \) on ITO coated glass. ...34
Figure S52. First profilometry scan of \(\mathbf{P}_{\text{os}2} \) on ITO coated glass. ...35
Figure S53. Second profilometry scan of \(\mathbf{P}_{\text{os}2} \) on ITO coated glass. ...35
Figure S54. Third profilometry scan of \(\mathbf{P}_{\text{os}2} \) on ITO coated glass. ...36
Figure S55. First profilometry scan of \(\mathbf{P}_{\text{os}3} \) on ITO. ...36
Figure S56. Second profilometry scan of \(\mathbf{P}_{\text{os}3} \) on ITO coated glass. ...37
Figure S57. Third profilometry scan of \(\mathbf{P}_{\text{os}3} \) on ITO coated glass. ...37
Figure S58. First profilometry scan of \(\mathbf{P}_{\text{os}4} \) on ITO coated glass. ...38
Figure S59. Second profilometry scan of \(\mathbf{P}_{\text{os}4} \) on ITO coated glass. ...38
Figure S60. Third profilometry scan of \(\mathbf{P}_{\text{os}4} \) on ITO coated glass. ...39
Figure S61. First profilometry scan of \(\mathbf{P}_{\text{os}5} \) on ITO coated glass. ...39
Figure S62. Second profilometry scan of \(\mathbf{P}_{\text{os}5} \) on ITO coated glass. ...40
Figure S63. Third profilometry scan of \(\mathbf{P}_{\text{os}5} \) on ITO coated glass. ...40
Figure S64. First profilometry scan of \(\mathbf{P}_{\text{os}6} \) on ITO coated glass. ...41
Figure S65. Second profilometry scan of \(\mathbf{P}_{\text{os}6} \) on ITO coated glass. ...41
Figure S66. Third profilometry scan of \(\mathbf{P}_{\text{os}6} \) on ITO coated glass. ...42
Figure S1. Thermal gravimetric isotherms of P1 (●), P2 (■), and P3 (▲) with 5 wt% loss (—) shown.

Figure S2. DSC curves of P1 (●), P2 (■), and P3 (▲)
Figure S3. Normalized absorbance spectra of P1 (▬), P2 (▬), and P3 (▬) in solution.

Figure S4. Normalized absorbance spectra of spray coated films P1 (▬), P2 (▬), and P3 (▬) immobilized as 200 nm thin films on glass substrates.
Figure S5. Solution electrochemistry of P1 in dichloromethane with 0.1 M TBAPF$_6$ supporting electrolyte. (Ferrocene was added as the internal standard).

Figure S6. Solution electrochemistry of P2 in dichloromethane with 0.1 M TBAPF$_6$ supporting electrolyte. (Ferrocene was added as the internal standard).
Figure S7. Solution electrochemistry of P3 in dichloromethane with 0.1 M TBAPF₆ supporting electrolyte. (Ferrocene was added as the internal standard).

Figure S8. Solution electrochemistry of the solution polymerized polymers P1 (■), P2 (■), and P3 (■) in dichloromethane with 0.1 M TBAPF₆ supporting electrolyte. (Ferrocene was added as the internal standard).
Figure S9. On-substrate (a) vs solution polymerized (b) films of EDOT polymers on ITO coated glass substrates. Left: OMe, Middle: H, Right: CN.

Figure S10. Normalized absorbance spectra of P_{os1} (■), P_{os2} (●), and P_{os3} (▲) on ITO substrate, Inset: photographs of P_{os3} (left), P_{os1} (middle) and P_{os2} (right) films on ITO substrates.
Figure S11. Spectroelectrochemistry of $P_{\alpha}1$ on ITO substrate in the neutral (▬) and oxidized (▬) states.

Figure S12. Spectroelectrochemistry of $P_{\alpha}2$ on ITO substrate in the neutral (▬) and oxidized (▬) states.
Figure S13. Spectroelectrochemistry of P₉₃ on ITO substrate in the neutral (▬) and oxidized (▬) states.

Figure S14. Spectroelectrochemistry of P₉₁ in original (▬), oxidized (▬), and neutral (▬) states on ITO substrate in acetonitrile with 0.1 M TBAPF₆ supporting electrolyte with Ag/Ag⁺ non-aqueous reference and Pt wire counter electrodes. Inset: photographs of P₉₁ films on ITO in original (left), oxidized (middle) and neutral (left) states.
Figure S15. Electrochemistry of P$_{\text{os}}$1 on ITO substrate in acetonitrile with 0.1 M TBAPF$_6$ supporting electrolyte with Ag/Ag$^+$ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s.

Figure S16. Electrochemistry of P$_{\text{os}}$2 on ITO substrate in acetonitrile with 0.1 M TBAPF$_6$ supporting electrolyte with Ag/Ag$^+$ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s.
Figure S17. Electrochemistry of $P_{\alpha}3$ on ITO substrate in acetonitrile with 0.1 M TBAPF$_6$ supporting electrolyte with Ag/Ag$^+$ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s.

Figure S18. Spectroelectrochemistry of $P_{\alpha}4$ on ITO substrate in the neutral (-----) and oxidized (●) states.
Figure S19. Spectroelectrochemistry of P_5 on ITO substrate in the neutral (▬) and oxidized (▬) states.

Figure S20. Spectroelectrochemistry of P_6 on ITO substrate in the neutral (▬) and oxidized (▬) states.
Figure S21. Electrochemistry of Pₜₐ₅ on ITO substrate acetonitrile with 0.1 M TBAPF₆ supporting electrolyte with Ag/Ag⁺ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s.

Figure S22. Electrochemistry of Pₜₐ₅ on ITO substrate in acetonitrile with 0.1 M TBAPF₆ supporting electrolyte with Ag/Ag⁺ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s.
Figure S23. Electrochemistry of P_{6} on ITO substrate in acetonitrile with 0.1 M TBAPF$_6$ supporting electrolyte with Ag/Ag$^{+}$ non-aqueous reference and Pt wire counter electrodes. Scan rate: 100 mV/s.

Figure S24. Spectroelectrochemistry of P_{4} on ITO substrate in the neutral (▬) and oxidized (→) states. Inset: photographs of the neutral (left) and oxidized (right) states of TPA-Th films.
Figure S25. Neutral (left) and oxidized (right) states of electrochromic devices with the solution prepared azomethines as the electroactive layer.

Figure S26. Transmission % of P1 on ITO substrate as a function of time monitored at 710 nm as a function of applied potential between 3.0 and -0.9 V at 30 sec intervals.
Figure S27. Transmission % of P2 on ITO substrate as a function of time monitored at 710 nm as a function of applied potential between 3.0 and -0.9 V at 30 sec intervals.

Figure S28. Transmission % of P3 on ITO substrate as a function of time monitored at 710 nm as a function of applied potential between 3.0 and -0.9 V at 30 sec intervals.
Figure S29. Neutral (left) and oxidized (right) states of electrochromic devices prepared with on-substrate prepared polyazomethines as the electroactive layer.
Table S1. 2° CIE Lab coordinates of polyazomethines in solution.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>State</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Neutral</td>
<td>96</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>P1</td>
<td>Oxidized</td>
<td>86</td>
<td>-3</td>
<td>-0.5</td>
</tr>
<tr>
<td>P2</td>
<td>Neutral</td>
<td>83</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>P2</td>
<td>Oxidized</td>
<td>69</td>
<td>-13</td>
<td>-9</td>
</tr>
<tr>
<td>P3</td>
<td>Neutral</td>
<td>98</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>P3</td>
<td>Oxidized</td>
<td>88</td>
<td>-6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table S2. 2° CIE Lab coordinates of solution-made polyazomethines immobilized on ITO coated glass substrates.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>State</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Neutral</td>
<td>84</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>P1</td>
<td>Oxidized</td>
<td>69</td>
<td>0.9</td>
<td>13</td>
</tr>
<tr>
<td>P2</td>
<td>Neutral</td>
<td>84</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>P2</td>
<td>Oxidized</td>
<td>66</td>
<td>-0.6</td>
<td>9</td>
</tr>
<tr>
<td>P3</td>
<td>Neutral</td>
<td>89</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>P3</td>
<td>Oxidized</td>
<td>79</td>
<td>-2</td>
<td>5</td>
</tr>
</tbody>
</table>

Table S3. 2° CIE Lab coordinates of on-substrate prepared polyazomethines immobilized on ITO coated glass substrates.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>State</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{os}1</td>
<td>Neutral</td>
<td>51</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>P_{os}1</td>
<td>Oxidized</td>
<td>33</td>
<td>-0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>P_{os}2</td>
<td>Neutral</td>
<td>61</td>
<td>51</td>
<td>78</td>
</tr>
<tr>
<td>P_{os}2</td>
<td>Oxidized</td>
<td>27</td>
<td>3.0</td>
<td>1.6</td>
</tr>
<tr>
<td>P_{os}3</td>
<td>Neutral</td>
<td>54</td>
<td>20</td>
<td>8.0</td>
</tr>
<tr>
<td>P_{os}3</td>
<td>Oxidized</td>
<td>21</td>
<td>3.0</td>
<td>0.4</td>
</tr>
<tr>
<td>P_{os}4</td>
<td>Neutral</td>
<td>61</td>
<td>47</td>
<td>44</td>
</tr>
<tr>
<td>P_{os}4</td>
<td>Oxidized</td>
<td>36</td>
<td>-1.5</td>
<td>-5.7</td>
</tr>
<tr>
<td>P_{os}5</td>
<td>Neutral</td>
<td>64</td>
<td>46</td>
<td>104</td>
</tr>
<tr>
<td>P_{os}5</td>
<td>Oxidized</td>
<td>4</td>
<td>1.0</td>
<td>-1.8</td>
</tr>
<tr>
<td>P_{os}6</td>
<td>Neutral</td>
<td>36</td>
<td>39</td>
<td>22</td>
</tr>
<tr>
<td>P_{os}6</td>
<td>Oxidized</td>
<td>19</td>
<td>-0.5</td>
<td>-3.6</td>
</tr>
</tbody>
</table>
Figure S30. 2° CIE Lab coordinates of P1-P3 of thin films on ITO coated glass.

Figure S31. 2° CIE Lab coordinates for P_{\alpha1}-P_{\alpha3} of thin films on ITO coated glass.
Figure S32. 2° CIE Lab coordinates for P_{o4}-P_{o6} of thin films on ITO coated glass.

Figure S33. 2° CIE Lab coordinates of P1 (■), P2 (●), P3 (▲), P_{o1} (▼), P_{o2} (♦), P_{o3} (◄), P_{o4} (►), P_{o5} (★) and P_{o6} (■) combined.
Figure S34. IR spectrum of P1.
Figure S35. IR spectrum of $\textbf{P2}$.
Figure S36. 1H-NMR spectrum of P2 in CDCl$_3$.
Figure S37. IR spectrum of P3.
Figure S38. 1H-NMR spectrum of P3 in CDCl$_3$.
Figure S39. 1H-NMR spectrum of P1 in CDCl$_3$.
Figure S40. First profilometry scan of P1 film on ITO coated glass.

Figure S41. Second profilometry scan of P1 film on ITO coated glass.
Figure S42. Third profilometry scan of P1 film on ITO coated glass.

Figure S43. First profilometry scan of P2 on ITO coated glass.
Figure S44. Second profilometry scan of P2 on ITO coated glass.

Figure S45. Third profilometry scan of P2 on ITO coated glass.
Figure S46. First profilometry scan of P3 on ITO coated glass.

Figure S47. Second profilometry scan of P3 on ITO coated glass.
Figure S48. Third profilometry scan of P3 on ITO coated glass.

Figure S49. First profilometry scan of P_{os}I on ITO coated glass.
Figure S50. Second profilometry scan of $P_{os}I$ on ITO coated glass.

Figure S51. Third profilometry scan of $P_{os}I$ on ITO coated glass.
Figure S52. First profilometry scan of P_{os2} on ITO coated glass.

Figure S53. Second profilometry scan of P_{os2} on ITO coated glass.
Figure S54. Third profilometry scan of P$_{os2}$ on ITO coated glass.

Figure S55. First profilometry scan of P$_{os3}$ on ITO.
Figure S56. Second profilometry scan of P_{os3} on ITO coated glass.

Figure S57. Third profilometry scan of P_{os3} on ITO coated glass.
Figure S58. First profilometry scan of P_o_4 on ITO coated glass.

Figure S59. Second profilometry scan of P_o_4 on ITO coated glass.
Figure S60. Third profilometry scan of \(P_{os4} \) on ITO coated glass.

Figure S61. First profilometry scan of \(P_{os5} \) on ITO coated glass.
Figure S62. Second profilometry scan of P$_{os5}$ on ITO coated glass.

Figure S63. Third profilometry scan of P$_{os5}$ on ITO coated glass.
Figure S64. First profilometry scan of P₆ on ITO coated glass.

Figure S65. Second profilometry scan of P₆ on ITO coated glass.
Figure S66. Third profilometry scan of P_6 on ITO coated glass.