Supporting Information

Photomechanical Response of Polymer-Dispersed Liquid Crystals/Graphene Oxide Nanocomposites

Li Yu¹, Zhangxiang Cheng², Zhijiao Dong¹, Yihe Zhang²* and Haifeng Yu¹*

1 Department of Material Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
Email: yuhaifeng@pku.edu.cn

2 School of Materials Science and Technology, China University of Geosciences, Beijing.

Figure S1. Absorption spectrum of GO aqueous solution (0.2mg/mL).
Figure S2. (a) & (b) are POM images of the PDLC/GO nanocomposite films with 3wt% 5CB and 1wt% GO before and after stretching with an elongation rate of 100%. The scale bar is 100 μm.
Figure S3. Photograph of the nematic LC (5CB) dispersion in water.
Figure S4. Thermally responsive behaviors of stretched PVA film (a,b), PVA/GO film (c,d) and PVA/5CB PDLC film (e,f) with an elongation rate of 100%. Photographs of stretched PVA film at 25 °C (a) and 45 °C (b), PVA/GO nanocomposite film at 25 °C (c) and 45 °C (d), PVA/5CB PDLC film at 25 °C (e) and 45 °C (f).
Figure S5. Visible–light responsive behavior of the stretched PDLC/GO nanocomposite films with the upper layer rich of LC domains toward the light source (a) and with lower layer lacking of LC domains toward the light source (b).