Electronic Supplementary Information:

Using low generation dendrimers as monomers to construct dendronized hyperbranched polymers with high nonlinear optical performance

Wenbo Wu,* Zhen Xu,* and Zhen Li*

Chart S1. Graphical illustration of poling procedure for NLO polymers.

Chart S2. The structure of dendronized hyperbranched polymers DHPG0 and DHPG1.
Scheme S1. The synthetic route to the 9,9-dihexyl-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborate).

Fig. S1 1H NMR spectrum of S3 in chloroform-d.

Fig. S2 13C NMR spectrum of S3 in chloroform-d.

Fig. S3 1H NMR spectrum of G0≡ in chloroform-d.
Fig. S4 13C NMR spectrum of G0$-$ in chloroform-\textit{d}.

Fig. S5 1H NMR spectrum of S7 in chloroform-\textit{d}.

Fig. S6 13H NMR spectrum of S7 in chloroform-\textit{d}.
Fig. S7 1H NMR spectrum of S8 in chloroform-d.

Fig. S8 13C NMR spectrum of S8 in chloroform-d.

Fig. S9 1H NMR spectrum of G1-≡ in chloroform-d.

- S4 -
Fig. S10 13C NMR spectrum of G1 in chloroform-d.

Fig. S11 1H NMR spectrum of MG1 in chloroform-d.

Fig. S12 13C NMR spectrum of MG1 in chloroform-d.
Fig. S13 1H NMR spectrum of MG2 in chloroform-d.

Fig. S14 13C NMR spectrum of MG2 in chloroform-d.

Fig. S15 1H NMR spectrum of PG1 in chloroform-d.

- S6 -
Fig. S16 13C NMR spectrum of PG1 in chloroform-d.

Fig. S17 1H NMR spectrum of PG2 in chloroform-d.

Fig. S18 13C NMR spectrum of PG2 in chloroform-d.

- S7 -
Fig. S19 The FT-IR spectra of **PG1** and its corresponding monomer.

Fig. S20 The FT-IR spectra of **PG2** and its corresponding monomer.
Fig. S21 The MALDI-TOF mass spectrum of S8.

Fig. S22 The MALDI-TOF mass spectrum of G1-≡.

Fig. S23 The MALDI-TOF mass spectrum of MG1.
Fig. S24 The MALDI-TOF mass spectrum of MG2.

Fig. S25 TGA thermograms of hyperbranched polymers, measured in nitrogen at a heating rate of 10 °C/min.
Fig. S26 UV-Vis spectra of PG1 in different solutions. (0.02 mg/mL).

Fig. S27 UV-Vis spectra of PG2 in different solutions. (0.02 mg/mL).
Fig. S28 Absorption spectra of the film of PG1 before and after poling.

Fig. S29 Absorption spectra of the film of PG2 before and after poling.