Supplementary information

High quality samples of La-substituted BiFeO₃ prepared by mechanosynthesis

Antonio Perejón aValue, Pedro E. Sánchez-Jiménezb, José M. Criadoa, Luis A. Pérez-Maquedaa, Julio Romero de Pazc, Regino Sáez-Puchea, Nahum Masóe, Anthony R. Westf

aInstituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla). C. Américo Vespucio 49, Sevilla 41092, Spain
bDepartment of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
cUniversidad Complutense de Madrid, CAI Técnicas Físicas, Ciudad Universitaria s/n, Madrid, Spain
dDepartamento Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
eCentre for Material Science and Nanotechnology (SMN) Forskningsparken Gaustadallèen 21 0349 Oslo, Norway
fDepartment of Materials Science and Engineering, University of Sheffield, S1 3JD Sheffield, UK
Figure S1. Diffraction patterns at different milling times of the solids obtained after milling under oxygen (7 bar) the stoichiometric amounts of the single oxides necessary for the composition Bi$_{0.93}$La$_{0.07}$FeO$_3$.

Figure S2. Diffraction patterns at different milling times of the solids obtained after milling under oxygen (7 bar) the stoichiometric amounts of the single oxides necessary for the composition Bi$_{0.85}$La$_{0.15}$FeO$_3$.
Figure S3. Diffraction patterns at different milling times of the solids obtained after milling under oxygen (7 bar) the stoichiometric amounts of the single oxides necessary for the composition Bi$_{0.70}$La$_{0.30}$FeO$_3$.

Figure S4. Diffraction patterns at different milling times of the solids obtained after milling under oxygen (7 bar) the stoichiometric amounts of the single oxides necessary for the composition Bi$_{0.55}$La$_{0.45}$FeO$_3$.

3
Figure S5. Diffraction patterns at different milling times of the solids obtained after milling under oxygen (7 bar) the stoichiometric amounts of the single oxides necessary for the composition Bi$_{0.40}$La$_{0.60}$FeO$_3$.

Figure S6. Diffraction patterns at different milling times of the solids obtained after milling under oxygen (7 bar) the stoichiometric amounts of the single oxides necessary for the composition Bi$_{0.20}$La$_{0.80}$FeO$_3$.
Figure S7. Diffraction patterns at different milling times of the solids obtained after milling under oxygen (7 bar) the stoichiometric amounts of the single oxides necessary for the composition LaFeO$_3$.

Figure S8. SEM micrographs corresponding to powders obtained after milling the single oxides necessary for the composition Bi$_{0.93}$La$_{0.07}$FeO$_3$. Micrographs were taken after milling (a) 0.5 h, (b) 1 h, (c) 3 h, (d) EDX spectrum of the product shown in (c).
Figure S9. SEM micrographs corresponding to powders obtained after milling the single oxides necessary for the composition Bi$_{0.85}$La$_{0.15}$FeO$_3$. Micrographs were taken after milling (a) 0.5 h, (b) 1.5 h, (c) 3 h, (d) EDX spectrum of the product shown in (c).

Figure S10. SEM micrographs corresponding to powders obtained after milling the single oxides necessary for the composition Bi$_{0.70}$La$_{0.30}$FeO$_3$. Micrographs were taken after milling: (a) 0.25 h, (b) 1 h, (c) 2 h, (d) EDX spectrum of the product shown in (c).
Figure S11. SEM micrographs corresponding to powders obtained after milling the single oxides necessary for the composition Bi$_{0.55}$La$_{0.45}$FeO$_3$. Micrographs were taken after milling: (a) 0.5 h, (b) 1 h, (c) 2 h, (d) EDX spectrum of the product shown in (c).

Figure S12. SEM micrographs corresponding to powders obtained after milling the single oxides necessary for the composition Bi$_{0.40}$La$_{0.60}$FeO$_3$. Micrographs were taken after milling: (a) 0.5 h, (b) 1 h, (c) 2 h, (d) EDX spectrum of the product shown in (c).
Figure S13. SEM micrographs corresponding to powders obtained after milling the single oxides necessary for the composition $\text{Bi}_{0.20}\text{La}_{0.80}\text{FeO}_3$. Micrographs were taken after milling: (a) 0.25 h, (b) 1 h, (c) 1.5 h, (d) EDX spectrum of the product shown in (c).

Figure S14. SEM micrographs corresponding to powders obtained after milling the single oxides necessary for the composition LaFeO_3. Micrographs were taken after milling: (a) 0.5 h, (b) 1 h, (c) 2 h, (d) EDX spectrum of the product shown in (c).
Figure S15. Diffraction pattern corresponding to the sample Bi$_{0.93}$La$_{0.07}$FeO$_3$ obtained after milling the single oxides for 3 hours, and heated to 800°C (dots). The solid lines are the results of the Rietveld refinement. The inset shows a detail of the refinement in the range 20-45° where the maxima peaks are observed.

Figure S16. Diffraction pattern corresponding to the sample Bi$_{0.85}$La$_{0.15}$FeO$_3$ obtained after milling the single oxides for 3 hours, and heated to 800°C (dots). The solid lines are the results of the Rietveld refinement. The inset shows a detail of the refinement in the range 20-45° where the maxima peaks are observed.
Figure S17. Diffraction pattern corresponding to the sample Bi$_{0.55}$La$_{0.45}$FeO$_3$ obtained after milling the single oxides for 2 hours, and heated to 800ºC (dots). The solid lines are the results of the Rietveld refinement. The inset shows a detail of the refinement in the range 20-45º where the maxima peaks are observed.

Figure S18. Diffraction pattern corresponding to the sample Bi$_{0.40}$La$_{0.60}$FeO$_3$ obtained after milling the single oxides for 2 hours and heated to 800ºC (dots). The solid lines are the results of the Rietveld refinement. The inset shows a detail of the refinement in the range 20-45º where the maxima peaks are observed.
Figure S19. Diffraction pattern corresponding to the sample Bi$_{0.20}$La$_{0.80}$FeO$_3$ obtained after milling the single oxides for 2 hours and heated to 800°C (dots). The solid lines are the results of the Rietveld refinement. The inset shows a detail of the refinement in the range 20-45° where the maxima peaks are observed.

Figure S20. Diffraction pattern corresponding to the sample LaFeO$_3$ obtained after milling the single oxides for 2 hours and heated to 800°C (dots). The solid lines are the results of the Rietveld refinement. The inset shows a detail of the refinement in the range 20-45° where the maxima peaks are observed.
Figure S21. Diffraction pattern corresponding to the sample Bi$_{0.70}$La$_{0.30}$FeO$_3$ obtained after milling the single oxides for 2 hours and heated to 800°C (dots). The refinement of the pattern with Jana2006 in LeBail pattern match mode was performed considering the superspace group Imma(00γ)s00. The inset shows a detail of the refinement in the range 26-42°. The red arrows indicate the satellite peaks not fitted by this super structure.
Figure S22. Rietveld refinement of the pattern of the sample Bi$_{0.70}$La$_{0.30}$FeO$_3$ with Jana2006 in LeBail pattern match mode considering the superspace group Pn2$_1$a(00γs)00. The inset shows a detail of the refinement in the range 26-42º. All satellite peaks are fitted by this super structure.
Figure S23. Full Rietveld refinement of the pattern of the sample Bi$_{0.70}$La$_{0.30}$FeO$_3$ with Jana2006 considering the superspace group Pn2$_1$a(00γ)s00.
Figure S24. Detail of the XRD patterns measured at different temperatures (between 320°C and 360°C) for Bi$_{0.70}$La$_{0.30}$FeO$_3$. From 350°C the double peak at about 22.5° transforms to a single peak and a new peak at 25.3° appears. The new phase can be indexed as Pnma, as was observed for compositions $x \leq 0.15$ above T$_C$. Other phase transitions at higher temperatures were not observed.
Figure S25. Magnetic field dependence of the magnetization at 5 K and 300 K for BiFeO$_3$ nanoparticles.
Figure S26. (a) Hysteresis loops obtained at 300 K for Bi$_{1-x}$La$_x$FeO$_3$ samples with $x= 0, 0.02, 0.07$ and 0.15. (b) Zoom of the hysteresis loops.